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I. Introduction

Synthetic Aperture Radar (SAR) imaging has had an impact in many disciplines
over the past few decades. The high quality images taken from satellites and
aircraft, initially designed for military surveillance and target detection, have been
applied to make advances in accurate mapping, geological exploration,
environmental monitoring, and agriculture. Satellite and airborne SAR data has
become readily available in the past decade, and processing of the data has
become key. Traditional FFT-based methods to process signal and phase history
data into images are widely used, even though they suffer from poor resolution and
high sidelobe artifacts. However, modern spectral estimation methods provide an
attractive alternative that can improve resolution, help eliminate image speckle
effects, and increase the accuracy of interferometric height estimates. These
methods promise to improve the clarity and applicability of SAR imaging for many
applications.

This project set out to explore various spectral estimation techniques that can be
applied to SAR imaging systems. In Section Il, we show how SAR imaging
systems record data that has a Fourier Transform relationship with the image that
we want to measure. In Section Ill, we show how to apply spectral estimation
techniques learned in class and in the literature [1-3] to two dimensions. In
Section 1V, we study the performance of SAR imaging methods in simulations
using computer-generated SAR data. Then, in Section V, we evaluate the
performance of each method visually using simulated SAR images in the presence
of additive noise and phase errors. Finally, actual SAR data was used with our
algorithms to judge the effect of the implemented algorithms on real SAR systems.

II. Background: Spotlight Synthetic Aperture Radar

The goal of the SAR imaging system is to produce an estimate of the amplitude of
the reflectivity function g(x,y) of a scene. In this section, we show how illuminating
the scene using radar produces phase history data that has a two-dimensional
Fourier Transform relationship with g(x,y). The main goal of this project is to study
the power spectral estimation problem of converting the phase history to an image.
However, it is important to gain a physical understanding of the measurement
process that produces the phase history to justify the mathematical model used
and to be able to generate test data for our simulations.

In the SAR system, the antenna is fixed to an aircraft flying in the cross-range or
azimuth direction, and the beam looks out from the side of the aircraft, in the
direction referred to as the range direction. As the aircraft moves along its flight
path, it periodically transmits pulses of microwave energy that are reflected back
by the targets on the ground and received by the radar [11]. The data collected is
called the phase history, which is passed to a processor. Figs. 1 and 2 show an
SAR system and explain the notations used throughout this section.
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Figure 1. Spotlight mode synthetic aperture radar. The radar is steered continually during
the flight. [11]
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Figure 2. SAR principle. The datareceived in each pulse is the reflectivity integrated over
awave front y=vy;. [11]



A SAR system launches spherical wave fronts, but because the radar platform
typically operates at standoff distances that are large compared to the scene
diameter, these wave fronts are well approximated as planar. The receiver
measures the signals reflected by all targets lying along the same constant-range
contour at the same time. Thus the measured signal is not simply the value of the
complex reflectivity function at any one ground position (x,y). Instead, the receiver
integrates the reflectivity values from all targets that lie along the corresponding
constant ground range line y = y;. The SAR system resolves the ambiguity by
using information from the other times that the target is illuminated as the aircraft
moves along its flight path [11]. The longer the target is illuminated, the more
information we can get on the position.

Two different principal modes are used in SAR imaging:
1. In the strip-map mode, the antenna is aimed orthogonal to the flight path
and keeps this orientation
2. When better resolution for a smaller ground patch is desired, the spotlight
mode is preferred. In this mode, the illuminating radar beam is steered
continually as the aircraft moves, so that it illuminates the same patch over
a longer period of time.
In this project, we restrict our analysis to the latter technique. Processing of the
phase history generated in spotlight mode requires 2-D power spectral estimation
methods for image formation, which is the motivation for our project.

1. Range Compression

The signal emitted by the radar is usually a linear FM chirp [11] described by
Re{s(t)}, with
. 2 - <1<
(Eq. 1) s(t) _ {exp[](a)ot +at )] r./2<t < .12
0 otherwise

The frequencies encoded by the chirp s(t) extend from wo—a . t0 wpta 1. We
assume that the ground patch illuminated extends to the area
(x,y)O[-L,L]x[-L,L]. Then with the notations defined in Fig. 1, the return signal

is expressed as:
L
@ 0= R el -r-m)rat-r,- 5 o)
L
with
L
(Eq. 3) p,(y) = '[g(icose—ysinﬁ,isin9+ y cosd)dx
-L

2R - 2y cosy

(Eq. 4) To=—
C C

where R is the distance to the center of the ground patch, and X and y are given
by the linear transformation,



(Eq. 5) X = Xcos@ +ysing
(Eq. 6) y =-xsin@ + ycosé

Note that we introduce the depression angle ¢, i.e. the angle that the incident
microwave makes with the ground, and c, the speed of light.

The first task is to remove the effect of the carrier from rc(t). We will then show that
the collection of functions p,(y) obtained over an interval of viewing angles,

AB, contains sufficient information to reconstruct g(x,y).

The equation for r(t) can be interpreted as the convolution of pg and the signal s,
with the output evaluated at t+ 1o, where 1 is the delay of the wavefront received
form y=0 (the middle line of the illuminated ground patch). We define the patch
propagation time 1, as the difference in two-way propagation delay between a
target at the near-edge and a target at the far-edge of the illuminated patch (7 =
4L cospL). Then we can see that the equation for r¢(t) is valid only for times that are
in the common intersection of the return from near-edge and far-edge targets. This
restricts the processing window to the common time segment for which chirp
returns from all targets in the ground patch exist simultaneously:

T T T T
Eq.7 I+ -"CS<t<sr,-—2+-¢
(Eq. 7) 0 2 2 0 2 2

In our case, we take 1.>>1,, and then there is an attractive technique which can be
used to deconvolve s(t) from r(t), called deramp processing. This is accomplished
in three steps:

1) Mixing the returned signal with the delayed in-phase and quadrature

versions of the transmitted FM chirp;

2) Low-pass filtering the mixer output; and

3) Fourier transforming the low-passed signal.
We give the mathematical analysis of these steps in the following.

Mixing

The mixing step requires that we know the round-trip propagation time T, to the
center of the ground patch; this is determined by electronic navigation systems,
and imperfections on this value makes it necessary to have additional post-
processing techniques. The deramp mixing terms are given by:

C, (t) =cos(aw, (t —7,) +a(t - To)z)

(Eq. 8) . )
and cq(t) =—sin(w,(t-7,) +a(t-1,)°)

By multiplying r¢(t) with the first signal, one can show that we obtain the following
expression:
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Fa(t) = gD{I Pe(Y) exp{i[wo(Zt —7(y) - 21,) +a((t—7,)° +(t - 7(y) - To)z)]}d Y}

—D{I P, (Y) exp[j[aﬁ(&) - 7(y)(@, + 20t - ro»]}d 9}

Low-Pass Filtering

We see that we can remove the first term in the previous expression with a low-
pass filter. We do this to remove the part of the signal centered at frequency 2wy
and to extract the baseband signal. We proceed in a similar way with the
guadrature component, to get the signals:

(Eq.9)  ry(t)= gm{ [ P exeliar? () - 19w, + 20t - 1,))} dy}

(Eq.10)  ry(t) = g‘ D{j P, (¥) exlo{j[ar2 V) -1, +2alt -1, ))}d)—/}
(Eq.11)  r (t) =ry (1) + jro(t) = g{f pe(V)eXP{J [O'TZ(V) —7(y)(ws +2a(t - To))} dy}

Ignoring the quadratic phase term a7’ (we could add this effect in a more precise
study), we get at the output of the quadrature demodulator:

A .2
Eq.12)  r.(t) =3 J‘L { yccoszp (e, +2a(t -1, ))}d?

Fourier Transforming

We can recognize in the last expression the Fourier transform of py over a certain
range of spatial frequencies. Plugging the interval on which the signal is processed
(Eq. (7)), we conclude that the Fourier transform is determined over the interval of
spatial frequencies Y =(2/c) cosy (apt20a(t- 1) given by (with 1c>>1p):

2cosy

(Eq. 13) (w, +ar )

2008 (w, —ar, )<Y <
C

And thus a final Fourier transformation (also called range compression) of r¢(t)
gives the estimate of p,(y).

2. Cross-Range Resolution Problem

L
Now that we have recovered p,(y) = .[g(icose— ysing,Xsin@ + ycosf)dx

for y in [-L, L] and @ describing an interval 46, we still have to show that we can
extract from it an estimate of the reflectivity function g(x,y). The Projection-Slice



theorem states that the 1D Fourier transform of any projection function pgu) is
equal to the 2D Fourier transform G(X,Y) of the image to be reconstructed (i.e. the
reflectivity function) evaluated along a line in the Fourier domain that lies at the
same angle 6 measured from the X axis [11]. That is:

G(U cos8,U sinf) = j P, (W)e ™ du=P,(U)
(Eq. 14) m':
where G(X,Y) = J. jg(x, y)e ! X dxdy

—00—00

Note that the finite limits —L and L can be used here because g is zero outside the
circle centered at the origin with radius L. This result is easily shown using a
rotational change of variable:

x| [cos@ -sin@]|X
(Eq. 15) =\ . _
y sng  cosé y

in the expression of G(U coség, U sinf).

Therefore, we see that starting from the projection functions p,(y) over a range of

6, we can determine the values of the two-dimensional Fourier transform G(X,Y)
along lines of the same orientation by taking the one-dimensional Fourier
transform of p,(y). If the projections span 180° of viewing directions, we can then

obtain the complete Fourier transform G(X,Y) of the reflectivity function in a circular
region. In practice, the projections are taken for a discrete set of angles & and
positions y. Thus we can obtain a reconstructed image g(x,y) by simply taking the
discrete inverse Fourier transform of the data. However, as we have seen, these
data are organized in a way that is compatible with a polar coordinate system, and
in practice, we must first perform a polar to Cartesian coordinates interpolation in
order to use the FFT algorithm. A more precise description of this transformation
can be found in [11].

3. Phase history and SAR data

To conclude this section of the SAR imaging system, we sum up the results that
justify the study that we will conduct in the following sections. In this report, we use
the phase history, that is, SAR data in its final form after the Cartesian to polar
interpolation. From the results of this section, we know that applying a 2D-FFT on
this phase history will furnish an estimate of the reflectivity function g(x,y). Thus,
this complicated data acquisition process can be exploited very simply in this
project.



These characteristics of the spotlight mode SAR data show clearly why spectral
estimation techniques are useful. As an example, a single scatterer at point (X,y)
with reflectivity amplitude of a will generate a phase history of the form:

€.16)  @={ae ™™ ) e
Note that this result is after sampling and ignoring the phase terms since we are
only interested in the amplitude. Fig. 1 shows the phase history generated by just
one point; considering an image as a discrete set of points, we will just need to add
these functions to generate the final phase history. A single point scatterer results
in a two dimensional sinusoid but only a finite set of samples. Therefore by
replacing the 2D-FFT with refined spectral estimation methods, we hope to
increase the quality of the reconstructed spatial spectrum.

7o &0 50 40 a0 20 10 L 2 . v

Figure 3. Point target phase history (real part) and 2D FFT Reconstruction

The following sections will present some possible techniques based on well-known
one-dimensional algorithms, and evaluate their performance for SAR image
reconstruction.

[ll. Spectral Estimation Techniques

We chose to implement several spectral estimation methods in order to gain an
understanding of the SAR imaging problem. From non-parametric methods, we
implemented a baseline FFT method, several Periodogram-based methods,
including the Windowed Periodogram, Blackman-Tukey and Welch methods as
well as the Capon and APES methods. We also implemented the EigenVector
(EV) method, which is a parametric subspace decomposition method.

In looking at the formulations for each method, it became apparent that each
method would provide different magnitudes when applied to our data. For
example, we know for the Capon method that different normalization methods
exist, and there is no absolute justification for them. Since we were interested in
evaluating image quality and not necessarily in evaluating peak intensities, we did
not develop elaborate normalization schemes for each method. In the actual



MATLAB implementations, we chose to simply normalize each method by its peak
level and display on a dB scale.

In addition, we normalized the units of the results. Since the FFT is an estimate of
amplitude, while all other methods are estimates of power, there is a discrepancy
in the results unless we normalize one or the other. Since we use the FFT as our
baseline, we chose to take the square root of the output of all methods except for
the FFT. (We could have chosen to square the FFT and leave the others alone,
but the choice was arbitrary). Since our images are displayed on a dB scale, the
square root operation does affect the range, but doesn’'t change the image
otherwise.

1. FFT

To establish an initial image, a 2-D FFT was applied to the phase history data. As
mentioned, this image was used as a baseline for comparing the results of the
spectral estimation techniques described below. Note that in practice, the FFT and
the Windowed Periodogram are the most common methods used for generating
SAR images.

2. Periodogram based Methods

The first spectral estimation methods studied were the Periodogram based
methods, namely, the Windowed Periodogram, Blackman-Tukey, and Welch
methods. These can be thought of as refined versions of the FFT and were simple
to implement.

Windowed Periodogram

The windowed Periodogram was the first spectral estimation technique evaluated.
A two-dimensional discrete space extension of the 1-D case described in [2] was
derived. The resulting formula was found to be:

[ 2

Y. > v(nm)y(n,mje

Eq.17) @ (w, W)=
(Eq.17) @, (w,,w,) MIN |2 2

where v(n,m) is a 2-D window function, and y(n,m) is the two-dimensional phase

history of size [NxM]. Here, ay and «j are frequencies that correspond to point (X,y)
of the image. This formula was implemented in MATLAB using a 2-D FFT. For
this implementation, the window size was chosen to be equal to the phase history
size. In this case, choosing a rectangular window function is equivalent to the 2-D
un-windowed Periodogram. Of the variety of window functions available for use in
the windowed Periodogram, a Taylor window was chosen. A Taylor window is
commonly used in SAR imaging because it provides strong sidelobe reductions

10



with minimal effect on resolution [6]. Additionally, the sidelobe reduction is
selectable via the window parameters. For this evaluation, the peak sidelobe level
was set to —35dB and the number of nearly constant level sidelobes adjacent to
the mainlobe was chosen as 5. These are typical SAR parameters. The Taylor
window equations were obtained from [6]. The 2-D window was formed by
combination of the 1-D window functions in MATLAB.

Blackman-Tukey

The next method studied was the Blackman-Tukey method. This method seeks to
improve on the high statistical variance of the spectral estimator as described in
[2]. The implementation of this method can be thought of as a locally weighted
average of the Periodogram. The 2-D formulation was found to be (here * denotes
a convolution)

(Eq.18) @y (0, ®,) = @, (@, w,) V (w,, w,)

where V(w,,w,) is the Fourier transform of the window function also referred to as

the spectral window. The convolution of this spectral window with the
Periodogram estimate results in a smoothing effect in the frequency domain
image. While this will theoretically reduce the variance, the resolution is degraded.
Careful selection of the window function and its size are necessary to ensure good
results. In this case, a Hamming window whose size was one half the final image
size was chosen based on subjective assessment of the images. Using MATLAB,
the actual application of the window was applied using a 2-D IFFT on the
Periodogram estimate, multiplying by the window function and then using a 2-D
FFT to obtain the Blackman-Tukey estimate. The Periodogram estimate used
here was the un-windowed type as described above.

Welch Method

The final Periodogram based method implemented was the Welch method. This
method also seeks to trade resolution for variance through averaging. The 2-D
discrete space formulation was found to be:

MSy 1NS -1

Z Z"(” m)Y{(C -1K, +n,(d-1K +n{e @)

sy m=0 n=0

In this case, the image is divided into overlapping blocks and averaged together.
The terms Ng and Mg define the size of each block, and the terms K, and K,

define the amount of overlap. In this case, the 2-D window v(n,m) is chosen to be
the size of each block. The recommended value for K, and K, provides for 50%

11



overlap of each block and is given by is N/2 and M/2 respectively where N and M
are the total phase history size. This is what was used in this study. The S, and

S, terms define the total number of blocks and is given by the integer parts of
N-N. +K M-M, +K
S:( s, T ) andS:( , y).

X y
K, y

3. Covariance-Based Methods

The next spectral estimation methods studied centered on the autocovariance
matrix. These methods include the Capon method, EigenVector (EV) method, and
the Amplitude and Phase Estimation (APES) method. To use these methods, the
first task was to determine the autocovariance matrix.

In two dimensions, the estimation of the autocovariance matrix from the signal
history data poses two problems. First, there is no consensus among researchers
of which method has the best performance. Secondly, the resulting
autocovariance matrix is much larger in this 2-D case than it was in the 1-D case.
A 1-D signal length M would result in a correlation matrix size on the order of M. A
square image with dimensions MxN would have a autocovariance matrix size the
order of (MN), and correspondingly memory requirements on the order of (MN)Z.
As we attempted to do operations on real phase data of dimensions 256x256, we
were limited by the memory available on our computers.

The simplest method used for autocovariance matrix estimation is the covariance
method, or sub-aperture averaging [1]. In this method, a small sub-aperture X;; (a
matrix of size Ky by Ky) is chosen from the signal history matrix starting at data
point (i,j). Then a vector of length (K*Ky) is formed by 'raster scanning’, ie.,
stacking columns of X;; on top of each other to form a one-dimensional vector, X;;.
Then, the outer product of x;; is taken, resulting in a autocovariance matrix R;.
This process is repeated for all possible (i,j) and all of the R; are averaged
together. This produces a 'unidirectional’ subaperture estimate R.

The selection of K, and Ky is up to the user - 40-50% of the data record lengths M
and N respectively are recommended by [1], while [7] insists only that Ky << M and
Ky << N to ensure a sufficient number of lagged products for statistical stability.

A variation of this method is forward-backward subaperture averaging. This
method helps average out the noise by using the fact that a 2-D sinusoid evolves
in one spatial direction in the same manner as the conjugate sinusoid evolves in
the opposite spatial direction [1]. Also, the forward-backward method gives a
matrix that is better conditioned than just the forward sample covariance matrix.
There are other methods that can be implemented in a computationally less
intensive manner - specifically, Toepliz-Block-Toepliz method [8]. However, to
ease implementation time, we used forward-backward subaperture averaging in
this report.

12



Capon Method

The Capon method, also called the minimum variance method, is of key
importance in high-resolution 2-D spectral estimation. It was originally proposed
for 2-D signals [9]. If we define the 2D Fourier vectors as

. . s s _ T
(Eq 20) W(a)x’a)y) — [1e_]£d>< . e_J(M—l)&)x]T D [1e Jawy ...@ iM-Dw,

(where [ denotes the Kronecker product of the two vectors), the amplitude at each
point is given by:

1
W o, w, ) R*W(w,,w,)

A

(Eq. 21) gow(a)x,a)y) =

The Capon method is designed to pass a 2-D sinusoid at a given frequency
without distortion while minimizing the variance of the noise of the resulting image
[7]. Calculation of the above equation involves two computationally intensive
tasks: inversion of the R matrix, and matrix multiplication by W(ax ,«j) vectors,
which must be done for each image point.

Subspace Decomposition Methods

The EigenVector (EV) and MUSIC methods are both parametric methods that
exploit the assumption that the phase history data is a sum of 2-D sinusoids in a
background of white noise. They are called subspace decomposition methods for
peak estimation because they separate the eigenvectors of the autocovariance
matrix into those corresponding to signals and to clutter. In the EV method, the
amplitude of the image at a point (a)x,a)y) is given by:

1

> /]1\_4 v JW("’X"”V)

clutter 71j

A

(Eq.22) @, (a)x,a)y) = (

W (e, )

while in the MUSIC method, the image amplitude is given by:
1

w (wx,wy)( Y vy jW(wx,wy)

clutter

(Eq. 23) éhusc (wx ' wy) =

Both methods attempt to bring the denominator to zero when a sinusoidal signal
corresponding to a point in the SAR image aligns with one of the signal subspace
eigenvectors. At that point, the result is a peak in the image estimate. Thus these
methods do not accurately represent the scattering intensity at each point, but

13



rather show the 'pointiness' of the image. The MUSIC method is considered to be
a poor performer in SAR applications [1]. Note that Eq. 22, the EV method uses
the inverse of the eigenvalues of the clutter subspace, while in Eq. 23, the MUSIC
method uses a constant. The MUSIC method is exploiting further the assumption
that clutter is white noise. In practice, this assumption is not entirely true, and the
EV method more accurately shows the features of the image. This is why we have
chosen to implement the EV method, rather than MUSIC. However, we are not
using the EV method to identify particular point scatterers, as we would in a true
parametric estimation problem. Instead, we display the normalized amplitude of
Eqg. 22. As we will see in the results section, this will provide us with a visually
appealing result.

Note that if all of the eigenvectors are included in the clutter subspace (model
order = 0) the EV method becomes identical to the Capon method. Thus the
determination of model order is critical to operation of the EV method. We must
decide based on an eigenvalue of the R matrix whether its corresponding
eigenvector corresponds to the clutter or to the signal subspace. The number of
eigenvectors chosen to be in the signal subspace is called the model order. For
our computer-generated SAR data from several point targets in white noise, the
eigenvalues corresponding to the different subspaces differ by orders of
magnitude. However, in real SAR images, there will be more of a continuum of
eigenvalues. One method is to select the model order such that a fixed fraction of
the energy is attributed to the signal subspace [1]. Another method is to choose a
fixed number for the model order. In our simulations, the EV method model order
was chosen to make sure that 98% of the signal energy is included in the signal
subspace.

APES Method

The APES method is a matched filter bank method that assumes that the phase
history data is a sum of 2-D sinusoids in noise. Empirically, the APES method
results in wider spectral peaks than the Capon method, but more accurate spectral
estimates for amplitude in SAR [3]. In the Capon method, although the spectral
peaks are narrower than the APES, the sidelobes are higher than that for the
APES. As a result, the estimate for the amplitude is expected to be less accurate
for the Capon method than for the APES method.

The SAR image is estimated using a form similar to the Capon method. Although
it uses the forward-backward subaperture averaging autocovariance matrix

estimate R, the APES method uses it indirectly through another matrix Q, which
is another estimate of the covariance matrix. The matrix Q is given by:

€ ofo,a)er Bl oo olo oo )
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where g(a)x,a)y):xi’jw(a)x,a)y) and g(a)x,a)y):x’jw(a)x,wy). The data matrix

X, ; is the subaperture matrix as defined above and Yi'j is the same matrix flipped

upside down and left to right. The vector W(a)x,a)y) is the Ky by Ky matrix given by:

Ea259  Ww,o)=[1e et glei el k]

The constants M, N and Ky, Ky are the dimensions of the full data matrix and the
2-D filter, respectively. The SAR image is then formed as follows:

oot W)t e o)

(=, + N K, + W, T, 0, Wi, )

(Eq. 26)

Note that a matrix inversion, Q‘l(a)x,a)y), must be calculated for each data point

(x,y) of the image. As a result of this requirement, the APES method requires
about 1.5 times more computation than the Capon method [10].

IV. Quantitative Analysis of the Techniques on Simulated Data

With the 2-D spectral estimation techniques derived and implemented in MATLAB,
it was time to evaluate their performance. The first step in evaluating each method
was to develop a set of simulated data. A simple point generation function was
developed to create a phase history signal for use in each method. This was
based on the theory outlined in Section Il. A sample image of a point target is
shown below. For the generation of these images, the phase history is zero
padded to the desired image size before implementing it with each method. In this
case a phase history of 32x32 pixels was used with an image size of 256x256
pixels.

Simulated Point Target (FFT method)

H
-100 3 - 0
-
-
=

A0

-30
T .

[ LLIfI]]]] LOLLLL LT 40
- HTH

-50
a0

-60

100 -0

-
-
-
-
-
-
L L L] L L
-100 -50 u] 50 100

Figure 4. Simulated point target. Image generated via FFT. Note the presence of
extensive sidelobes.

15



As we know from theory, a variety of spectral estimation methods try to trade off
noise variance and resolution. In 2-D, this tradeoff still remains, as the results of
our simulations show. In this section we determine the spatial resolution of each
method presented in Section Ill. Then, we add various levels of noise into the
phase histories in order to judge the noise variance performance.

1. Spatial Resolution

In the first set of simulations, the ability to resolve two closely spaced sources is
measured by simulation. Additive noise was set to a very low level in these
simulations to attempt to judge the performance of the methods in high SNR
situations. (Some level of noise was required to ensure that the covariance matrix
was full rank for the Capon, EV, and APES methods.)

In order to determine the resolution of each method, two points were generated a
fixed distance apart. A modified Rayleigh resolution criteria was used to determine
if the two points were resolved based on determining two distinct peaks down to
the —3dB height of the mainlobe. If the points were resolved the distance was
reduced and again the routine was run with the reduced distance. The iterations
were performed till the smallest distance was achieved for resolution. This method
was used to incorporate the effects that adjacent peak sidelobes had on each
other. This helped to match the resolution measurements with the subjective
assessment in Section V. The results are shown below in Figure 5 (a)-(Q).
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Figure 5. Spatial Resolution Plots: These figures show the 2-D spectral estimation of two
point scatterers separated by the resolution limit of the (a) FFT, (b) Taylor-windowed
periodogram, (c¢) Blackman-Tukey, (d) Welch, (e) Capon, (f) EV, and (g) APES methods.

Clearly, the covariance-based methods have significantly higher resolution. As
expected, the Welch method performs the worst as it trades resolution for
improved variance. This is due to contributions from overlapping blocks inherent in
the method. These images and section cuts also provide insight into how each
method acts on sidelobes. In this example, the width of the mainlobe and height of
the sidelobes contributed to the overall resolution. Table 1 below summarizes the
results.

Method Resolution [pixels]
FFT 25
Windowed Periodogram 24
Blackman Tukey 26
Welch 38
Capon 2
EV 2
APES 5

Table 1. Comparison of Resolution for Various Methods

The Blackman-Tukey appeared nearly identical to the FFT. This is likely due to
the large Hamming window whose size was chosen based on subjective image
quality. Using a smaller window resulted in less resolution, and a less visually
appealing image when using the simulated data described in Section V.
Apparently what is considered good to the eye depends more on resolution and
less on variance. Both the EV and APES are very similar to the Capon method.

2. Noise Performance

There are two types of noise common to SAR imaging systems, additive and
multiplicative. Additive noise typically results primarily from thermal noise from the
sensors. Multiplicative noise, on the other hand, is signal dependent, and its
overall level is dependent upon the backscatter coefficient of the target [6]. For
these reasons, only additive noise was applied to our simulated phase history data
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for purposes of evaluation. Circular complex white Gaussian noise was computed
with MATLAB in the following manner:

(Eq. 27) noise=i2(randn(N, M)+ j(randn(N,M)))

7

To illustrate the effects of noise, an example of a point target image is shown
below. This is the same point target used in Figure 4. In this case the noise level
(o0 =0.5) is significant enough to mask many of the sidelobes present in Fig. 4.

Simulated Point Target in Moise - sigma=0.5 (FFT Method)
2 2 " K

Sl =

s0R

50 &

100 B

400 A0 0 50 100

Figure 6. Simulated point target in noise. Image generated via FFT

Mean Squared Error

The MSE of each method in noise is calculated in a series of simulations in which
the noise variance varies from O to 4 at 13 steps. The MSE calculation was based
on a comparison with an image containing the actual points with the estimated
image. A total of 100 samples were taken at each noise variance level for each
method. Since the MSE measures the bias squared plus the variance, we expect
both the bias and noise variance of each method to influence the MSE results,
which are are plotted in Fig. 7.
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Figure 7. Mean Squared Error (MSE) plotted vs. standard deviation of noise.

This MSE evaluation shows that the Welch and Blackman-Tukey methods
performed the worst. This is because the averaging and smoothing effects used
by these methods trade bias to reduce variance. The covariance-based methods
performed well in low noise conditions, but were surpassed by the FFT at higher
noise levels. Of the covariance-based methods, the APES method performed the
worst (due to its higher bias) while the EV method was the best. Since it is difficult
to separate the influence of the bias and variance in the MSE results, we next
performed a separate simulation to study the noise variance of each method.

Signal to Noise Ratio

In this simulation, the phase history was created from a single point scatterer and
additive noise. The noise variance was varied from 0 to 4 in 13 increments. Each
spectral estimation technique was used to create an output image. In each output
image, blocks from each corner were extracted and used to obtain an estimate of
the noise variance. This process is illustrated in Fig. 8, where the gray areas are
the blocks extracted to estimate the noise. This was done to avoid the sidelobes
of the signal peak in the center of the image. For each case, the amplitude of the
point target was normalized such that the amplitude in the image was equal to 1.
Thus the signal to noise ratio is given simply by:

1
52

(Eq.28) SNR=

20



N i N R
il -l il -l
'|.'|"-|l_i u: i '|.'|"-|l_i u: i
..‘ ?.:; _':':-'.?".‘ '_‘ ?_':; -':':'r?.'.‘
I e T e \
Point Target | Noise Area
I |
NG N R
G G
'|.'|"-|l_i u: i !_'F'-'.. ": *
..‘ ?.:; _':':-'.?".‘ . ?_':; -':':'r?.'.‘
e LA i

Figure 8. Signal to Noise Ratio (SNR) Measurement Method

The results of the SNR measurements are shown below in Fig. 9. A theoretical
prediction of the SNR performance is given for the FFT and Windowed
Periodogram methods, and is seen to match the simulations well. For the other
methods, analytical results are not as readily obtained, so the simulation results
are especially useful.

Noise Performance

30 ; :

[k ; o FFT

i2 1 Windowed Periodogram
25%}”"""*"% ********** < Welch -

i l + Blackman-Tukey

T l Capon
20Wp- - e % APES .

V% i + EV
ARy o ! —— Analytical Results

SNR of SAR Image (dB)
P =
o (&)

(6]

Variance of Noise Added to Phase History

Figure 9. Signal to Noise Ratio (SNR) plotted vs. standard deviation of noise.
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From this figure, it is clear that the Welch and Blackman-Tukey methods
performed best, followed by the APES method. These results are expected again
since the SNR is a function of the signal variance of which the Welch and
Blackman- Tukey method set out to improve. The worst performers for signal to
noise ratio was the Windowed Periodogram. This is due to the effect that a
window has on the ability of the Periodogram to reduce the noise variance. Note
again that in our simulations, the FFT method is equivalent to an un-windowed
Periodogram. The APES method was best amongst the covariance-based
methods at higher noise levels, approaching the performance of the Welch and
Blackman-Tukey methods. In summary, all methods outperformed the Windowed
Periodogram method.

3. Quadratic Phase Error Performance

Since SAR imagery is generated from a phase history, it is important to consider
phase errors. These errors come mainly from errors in motion compensation
between the sensor and the target, and are classified into low frequency, high
frequency, and wideband groups. Each image formation method was evaluated
against its resistance to low frequency quadratic phase errors only. Low frequency
errors were chosen because they affect the mainlobe of the signal more so than
the high and wideband errors. This introduces geometric distortion and reduced
resolution [6]. It is important to assess how each image formation method reacts
to varying levels of quadratic phase error because additional “auto focus”
algorithms typically employed after image formation are only capable of
compensating for a certain amount of phase error.

The quadratic phase error (QPE) was applied by multiplying the phase history by
a phase error matrix. The same level of QPE was applied in both the horizontal
and vertical dimensions of the phase history. A real SAR system, however, may
experience different levels of phase error in each axis. The phase error matrix was
created by the following expression:

_ 2N 2nn?
(Eq.29) @, =€ e

where
n=-N/2...N/2

m=-M/2..M /2
y = Error in radians

Typically, a quadratic phase error of 72/4is considered acceptable and errors
above 7n1/2 are considered excessive [6]. The effect of QPE on a point target for
these error levels can be seen below in Fig. 10. Clearly, the mainlobe width
widens as the amount of error increases, thereby creating a loss in resolution. We
will see how this affects the image quality on simulated data in Section V below.
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Figure 10. Quadratic Phase Error Effects On Point Target using FFT

To evaluate how each method responds to this error, the mainlobe width at one
half the peak amplitude was determined for each method as the error was varied
from O to 272 and applied to the phase history. The mainlobe width was chosen as
a relative measure of resolution and is different from that in the previous section.
The results are shown below in Figure 11.

Irmpact of gpe an main lobe width
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Figure 11. The change in the spatial resolution of various methods as a function of the
severity of the quadratic phase error level. Spatial resolution is measured as the
minimum number of pixels in between two point scatterers that results in aresolvable
image. The sigma denotes the error in radians previously defined as gamma.
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Fig. 11 shows that the width tends to increase linearly with 0. The three worst
performing methods were the FFT, Blackman-Tukey, and Welch methods. The
covariance-based methods out-performed the Periodogram-based methods
because they start with a narrower mainlobe and are less affected by the widening
caused by the QPE. The windowed Periodogram performed well because the
windowing effect helped to combat the mainlobe widening caused by the QPE.

In general, for all methods except the Welch method, a quadratic phase error level
less than 172 keeps the width below 50 pixels. However, as the QPE increases to
1, the performance of many methods degrade significantly, and there is no method
with a width of less than 50. This is in accordance with the convention that
guadratic phase errors of 71/4is considered acceptable and errors above 71/2 are
excessive.

V. Image Quality with Simulated Phase History Data

Understanding how each method performed quantitatively on just a few points
provides the necessary background to evaluate and explain how each method
performs on more elaborate data sets. In this section, image quality, effects of
guadratic phase error, and computational complexity were evaluated using more
complicated simulated phase history data.

1. Simulated Images

To simulate more realistic SAR data, we used the set of point scatterers shown in
Fig. 12 (a). We generated a set of phase history data from this example, adding
white Gaussian noise with variance 0.25. The size of the phase history data is 32
by 32, and the image size is 256 by 256. An image size larger then the phase
history size is used to increase the number of frequencies evaluated to capture
more detail. The spectral estimates of the image, given in Figs. 12 (b) through (h),
can be used to discuss the advantages of using spectral estimation methods more
complicated than the FFT or Periodogram.
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Figure 12. Images created by various methods using simulated phase history data

From the observation of the previous images, we can extract a few interesting
characteristics from the different spectral estimators. The first group of estimators
is composed of the Periodogram-based methods (Windowed Periodogram,
Blackman-Tukey, and Welch methods). We know that these methods should give
relatively poor resolution because of the increased size of the point target main
lobe. However, they also help decrease the sidelobes, and therefore the points are
more easily extracted from the background and noise when compared with the
FFT method.

The second group of spectral estimators (Capon, EV, APES) can be used when a
better resolution is needed. It appears that APES does not perform as well as the
Capon or EV methods. However, the rationale for introducing the APES method
was that it seems to give better estimates of the amplitude of the reflectivity
function [3]. Since our simulations normalize amplitude, we can’t confirm this.

2. Effect of Quadratic Phase Errors on Image Quality

To observe the subjective effects of quadratic phase error, images were created with
varying degrees of phase error. The results in Figure 13 below show FFT and EV
methods for QPE of 0,72/4, and 7n/2. The FFT and EV methods were chosen because
they were determined to be the worst and best performers against QPE based on the
resolution analysis in Section IV. These images confirm the notion that a QPE greater
then or equal to Pi/2 results in poor performance, while a QPE of Pi/4 still provides
reasonable results. While these QPE’s applied were deterministic, similar results are

achieved by applying random QPE'’s.
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Figure 13. Simulated results for FFT and EV methods with 3 levels of quadratic phase error.
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3. Computational Complexity

Although it was not an initial objective of this project, the computational complexity
for some of the methods became an issue during simulations. Using the simulated
data described above, the computation times for each method were determined in
MATLAB. These are shown below in Table 2. These times were computed using
a Sun Workstation running Unix with 2048MB of memaory.

Method Computation Time [sec]

FFT 0.1236
Windowed Periodogram 0.2319
Blackman Tukey 0.6223
Welch 17.5674

Capon 617.4787

EV 617.7149

APES 221.6561

Table 2. Comparison of Computation Times for Various Methods

Although the algorithms used were not optimized with respect to computation time,
it is clear that the covariance-based methods require substantially more processing
time than the FFT and Periodogram-based methods. This issue becomes even
more critical when larger phase histories and images need to be processed, or if
near real-time processing is required. Theoretically, the covariance based
methods are on the order of (KxxKy)3 computations while the Periodogram based
methods exploit the efficient FFT which is of the order of (NxM)log(NxM). The
APES method, however, was implemented using a fast algorithm that provided a
threefold increase in processing time. Similar algorithms may be possible for the
Capon and EV methods. Ultimately, the covariance methods are limited by the
inversion or eigen decomposition of the autocovariance matrix.

VI. Image Quality with Actual Phase History Data

We were fortunate in this project to be able to use actual SAR phase history data
collected by Veridian-ERIM International. This data was collected by the Data
Collection System (DCS) air-to-ground X-band radar system mounted in a Convair
CV-580 aircraft. The image is of the area around the University of Michigan
football stadium. In this section, we describe the processing of this data and relate
some issues that arise when using real phase history data. Then, our spectral
estimators are applied to the data and the resulting images are shown.

1. Transitioning from Simulated to Real Data

Dealing with the much larger data set associated with actual SAR phase history
data presented significant computation challenges. With a phase history size of
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256 by 256 pixels, for most of the covariance-based methods, we estimated that a
full covariance matrix, as described in Section Ill, would require more than 4 GB of
RAM. This is beyond the capabilities of MATLAB and our network’s best
computers. To avoid that, we simplified the problem and used a smaller filter size
instead of the typically recommended size of one half the phase history. Doing this
sacrificed resolution, as can be seen comparing the results in Fig. 14 (a) and (b).
In these two figures, the Capon method is applied to using a filter window of 1/16™
and 1/8" the size of the phase history to see the improvement possible when
doubling the filter size.

Image Formation Using Capon Method Image Formation Using Capon Method

(a) Capon Method with filter size ph/16 | (b) Capon Method with filter size ph/8

Figure 14. The Capon method implemented with two different filter sizes shows the effect of
using more data in covariance-based methods. Here ph is the phase history size.

To achieve better resolution, the filter was reset to one half the phase history size
and the data processing was performed in blocks which were later reconstructed to
form the final image. Since the phase history could not be divided into blocks, an
FFT was used to put the data in the image domain. From here it was divided into
16 blocks and an inverse FFT applied to return back to the phase history domain.
This blocking process proved successful, however, artifacts of the block edges are
apparent in the final images.

For the EV method, we explored the selection of model order with real SAR data,
as we discussed briefly in Section 1ll, part 3. The results are shown in Fig. 15. To
speed up computation, a filter length of M/32 = 8 is used in the EV algorithm. This
results in an R matrix dimension 81. Because of the narrow filter, the resolution is
poor but still shows the effect of model order. As the model order increases, the
'pointiness’ of the data increases. In fact, we can identify particular peaks that are
emphasized as we move from Figure 15 (a) to (c). The model orders in (b) and (c)
was chosen to include 95% and 98% of the signal energy in the signal subspace,
respectively. We find that increasing the model order to 47 in Figure 15 (c) seems
to brighten the image too much - some points that are clutter seem to have been
emphasized.
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Figure 15. The UM stadium processed by the EV method with a model order of (a) 12, (b) 22,
and (c) 47. The maximum model order possible in this simulation was 81. As the model
order increases, more peaks can be seen in the image, but eventually noise in the image

2. Final Images

displays as peaks.

Although we don’t have an image of the ‘actual’ reflectivity for this area, we can still
compare the results in Figure 16 (b) through (f) to see the differences between
each method. Figure 16 (a) gives an indication of what the phase history of actual
SAR image data we were provided looks like.
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Image Formation Using Welch Method Reconstructed Capon Image
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Figure 16. The “Big House”, University of Michigan stadium processed by various spectral
estimation techniques. Can you count the 110,000 seats?

Looking at the FFT method, we can see white horizontal and vertical lines. These
are the sidelobes created by the high-amplitude peaks in the image. From close
inspection we can see whole grids of these lines in the upper right corner. This is
very different from the windowed Periodogram in (b), in which these sidelobe lines
are virtually erased. Notice the noisy background of the windowed Periodogram.
This noise is reduced by the Blackman-Tukey and Welch methods in (c) and (d),
respectively, but the lines from the sidelobes return. These methods also seem to
increase the contrast of the images. The Capon method, although processed in
blocks, provides a low noise image with average resolution. The EV and APES
results are similar to those of the Capon method.

In Section IV and V, the Capon, EV, and APES methods seemed to be vastly
superior in terms of subjective image quality. These results using real data seem to
contradict those results. It is likely that the wide range of intensities contained in
the real data don't fit the assumption of sinusoids in noise that are central to the
development of the covariance-based methods.
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VIl. Conclusion:

This project set out to explore various spectral estimation techniques that can be
applied to SAR imaging systems. As we had little background in SAR, extensive
research was conducted to understand the image formation process. This allowed
us to accurately generate simulated data representative of the real SAR images to
which we could apply the spectral estimation techniques once they were derived
for the 2-D case.

The technigues used were grouped together based on their similarities with the
Periodogram-based methods consisting of the Windowed Periodogram method,
Blackman-Tukey method, and Welch method. Similarly, the remaining methods,
Capon, EV, and APES were grouped together based on their extensive use of the
autocovariance matrix. In the Periodogram based methods, the results show that
the Welch and the Blackman-Tukey method do result in better noise performance
at the cost of increased bias. Additionally, there seemed to be a clear benefit in
using the Taylor window to reduce sidelobes. The covariance-based methods
provided the best overall results on simulated data. This was based on resolution,
MSE, and SNR criteria as well as subjective assessment of the simulated image
data under various noise and phase error conditions. The subjective evaluation of
the images revealed that resolution (or bias) has a larger effect on SAR image
guality than noise variance does.

Finally, applying the spectral estimation techniques to actual SAR data revealed
some surprises. The images created with the covariance-based methods did
result in images without sidelobes and with subjective image quality equal to that
of the Windowed Periodogram method, but they didn't have as much of a
resolution advantage as we would have expected. The covariance-based methods
also come at the price of significantly increased computational complexity and
memory usage. While faster algorithms may be implemented, they are still limited
by the inversion or eigen decomposition of the covariance matrix. This issue
became critical when large data sets of actual phase history data was used.

Which method is best? It depends on the application. Based on the real data
results, it is hard to beat the Windowed Periodogram. It is apparent that the
covariance-based methods did not perform as well on actual data as they did on
simulated data. Perhaps this indicates a departure from the model of a sum of
sinusoids in noise. In particular, if the real scene is not just a set of point
scatterers that produce a linear combination of complex exponentials, then the
covariance-based methods will not perform as well as they did in the simulations

[1].

Table 3 below summarizes our findings on the performance of various methods.
Overall, these findings are inline with [1].
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Method Advantages Disadvantages
FFT Fast, simple Large sidelobes
Windowed Fast, reduced Reduced resolution
Periodogram sidelobes
Blackman Tukey Good noise Large sidelobes
performance
Welch Good noise Poor Resolution
performance
Capon High resolution High computational complexity,
medium results w/ actual data
EV High resolution High computational complexity,
medium results w/ actual data
APES High resolution, faster | High computational complexity,
than Capon or EV medium results w/ actual data

Table 3: Summary of Characteristics of Each Method

Overall, this project provided great insight into issues associated with applying
theoretical solutions to real engineering problems. This basic understanding will
be helpful in applying more advanced signal processing techniques in our future

careers.

Lastly, the authors wish to thank Veridian-ERIM International for providing the
actual SAR data for use in our analysis.
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