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Abstract—We investigate a route exploration problem with | ;
N agents dropped randomly on the interval [0,b] and discuss
the impact of using multiple agents to perform this task. We ‘ ‘ ‘
consider both a discrete and a continous description of the path X,
to explore. Independantly, we study an exploration problem
with probabilistic agents having limited autonomy. In both ‘ S ‘
problems , multi-agent scenarios are discussed with an emphasis 2
on the number of agents necessary to obtain good performance.

Fig. 1. Problem description and notation in the case of two agents.
I. INTRODUCTION

Consider a line segment of length with coordinatex
describing a position on the segment. The endpointxare will not be any confusion since we consider these models
0 andx = b. The coordinates can take their values in théeparately.
discrete sef0,b] := {0,1,...,b}, in which case we obtain a  Part Il and Il examine how to optimally explore the line
line graph with(b+ 1) equally spaced sites, or they can takévith randomly dropped deterministic agents for a specific
their value in the continous intervéd, b). cost function, and how many agents we should use. Indepen-
We haveN agents with initial positionsq, i = 1...N. dantly, part IV and V discuss simple exploration strategies
When these initial positions are realizations of the associaté@f non-compliant agents as well as trade-offs appearing in
random variable¥;, i = 1...N, we denote the corresponding Multi-agent exploration scenarios.
order statisticgXin, XoN, - - -, Xn:N ), that is, the variable;
arranged in increasing ordeXin < Xon < ... < Xnn. We II. DETERMINISTIC OPTIMAL EXPLORATION PoLICY
assume a continuous distribution function for the random | this part we consider the continous model, where the

variablesX;, and therefore we havé(X, = Xj) =0 fori# ] agents respond deterministically to the controls. Extension
(see for example [1] p.29). to the discrete case is straightforward. We assume a cost
The agents can move along the continous line with thgroportional to the distance that each agent travels. A pos-
same speed. When the line is discrete, we also discretizesiple motivation includes the risk of losing agents along the
the time: in that case, at each period an agent can eithesth in a hostile environment, increasing as the agents cover
move to a site that is next to its current position, or remaig longer distance. Another example could be that we want
at its current position. to minimize the amount of energy used by each agent. In
Finally we also consider non-compliant agents, that reaghe optimization problem, we seek to minimize the sum of
probabilistically to given controls. More precisely, a nonthe distances covered by all the agents. We Hdvagents
compliant agent demonstrates the following behavior: initially at given distinct positions G x; < Xp < ...... <
« in the continuous case: each agent moves with speegd <b. To agent =1,...,N, we assign a part of the line to
v+ oW, with o a constant anilf{ 1-dimensional white explore, called5, and letL; = min § andR, = max§. Fig. 1
Gaussian noise with unit power spectral density. describes the notation in the case of two agents. Each agent
« in the discrete case: when we tell the agent to move orexplores its assigned region optimally by travelling a distance
step in a given direction, it might indeed move in thaid; = [(R — L) + min(x; — Li, R —X;)], that is, it travels to the
direction with probabilityp, but might go in the opposite nearest endpoint first and then to the opposite endpoint.
direction with probabilityq < p and also stay where it  The problem of minimum cost exploration For N agents
is with probability 1- p—g. To a one step displacementbecomes designing each $tso that when each of them is
corresponds a random variatde its mean is analogous explored optimally by the corresponding agent, the sum of
to the “speed” of the agent and therefore we write  the minimum distances is minimized:
p—q. Its standard deviation is = p+q+2pg— p? — .

v and o play a similar role in the continous and the discrete

- - - N . X . . X . .
case, therefore we use the same notation in both cases. There MniMize 32, [(R —Li) +min(x —Li, R — )]

subject to R>x>Lj, i=1,...N
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Fig. 2. Problem reformulation in the case of identical agents. The decisioh i
variables are th&’s. |

Fig. 3. Optimal Exploration Strategy to minimize the sum of individual

our desi iabl , dR’s: th . distances. The two cases correspond to the leftmost interval being the
ur design variables are the's andR’s; the constraints shortest interval or not. Only one agent switches direction, and only the

make sure that the line is completely covered. The followingmallest initial interval between agents is covered twice.
lemma formalizes the intuitive result that in general explo-
ration sets should not overlap.

Lemma 1:There exist an optimal solution for (1) satisfy-  proposition 2: Let X9 = 0, X1 = b, and let j =

ing: argmino_. n{(X+1—x)}. Then we have:
! Ry R H o if j=0,R=X11,i=1,...,N is optimal for (2).

Proof: Although this lemma is intuitively clear, dueto « if j >0,R =x%,i=0,....,(j—1) ,R=X%1,i=],...,N
the fact that we are considering identical agents, it is more is optimal for (2).
tedious to prove formally. Consider an optimal solution for
(1) (an optimal solution exists because of the interpretation
of the problem, or alternatively because we are minimizing
a concave function over a bounded polyhedron). jLbe an Zg(N) =b+ min {(x:1—X)}. (3)
index such thak ; = 0. If j # 1, we consider a modification to 1=0....N
the solution such thatj = R; andL; = 0. Since the agents
are identical, the fact that the leftmost part of the line i?o
covered by ageni or agent 1 does not change the solution
Consequently we have an optimal solution such that 0.
Similarly we can choose the optimal solution such fRat=

The cost of an optimal solution of (2) is

Fig. 3 illustrates this optimal solution, which actually
oks relatively clear. In words, we find the smallest interval
between two consecutive agents. Next we choose one of
these two agents, which will have to explore the intervals on
b both sides of its initial position. All other agents will have

Now consider two agenisandi+1, i € [1,N—1]. If R > only one m_terval to explore. Agaln_ We_do not have ummt_y

. e . ...of the solution, the choice for the directions of exploration is

Li+1 we consider a mod|f|c_:at|_on of the solution (denoted W'tharbitrar for instance. It is also clear that we can perform the
a’) such thatR = L % This modification implies y : P

no change on the other variables in the original solution. Thtt‘aaSk with the same cost using only one agent if the shortest

interval[Li,1,R] was previously covered at costR—Li 1) Interval is at the extremities, or two agents in the other cases.

: N T However our solution is still interesting because it leads to an
in the case where the agents were not switching direction at

o e optimal solution in the discrete case as well: using only one
the endpoints; it is now covered at ca —Li1). In the or two agents on the discrete line forces them to travel over

other cases where one or two agents switch direction to trave : L
) . ) L ites that are occupied by the other agents remaining idle.
to their other endpoint, we verify that the cost is still divide . : . .
L . . hereas in the continuous model this does not contribute to
by two. Therefore the initial solution could not be optimal, " . .
an additional displacement cost because the agents positions

and the lemma is proved. : L
. - . . are represented by points of measure 0, the additional cost
We do not have in general unicity of the optimal solution

(as it will become clear in the following, there is an optimaIOf this policy in the discrete cas.e appears clgarly. .
solution using only one or two agents in any case). However _100f: We prove the following result by induction on
the lemma is useful in restricting our analysis to some natur: 6t N agents with initial positionsq < ... <xy in the
configurations. The problem then reduces to the followin§erval (@, B], 0< a < <b; then the optimal cost for the
(see Fig. 2): refering to the poir® — Li,; as the point exploration of this interval i —o+mini—o n{(%+1—%)},
R,i=1..N—1, Ry=0, Ry = b, we want to find the With the conventiono = & andxy1 = p.
positions of the pointsR; in order to minimizezi'\lzl[(Ri _ The result is trivial for one agent. Now suppose the result
Ri_1) +min(x — R_1,R — )], which is rewritten: true for all k < N—1, and we want to prove it foN
agents,N > 2. Since we haveN + 1 intervals to explore

N between the starting points, and omllyagents, at least one

minimize b+ § min(x — R_1,R — X (2) agent has to switch direction and travel B, and R.
i; Consider the agents,1. N in increasing order, and call
subject toRy =0, Ry = b, p the first agent to switch direction. Agents.1,p are

exploring o, Rp], agentsp+1,...,N are exploring[Ry, ],
and the second group should explore its part optimally. Thus
the induction hypothesis applies for the second group and

Xi SRiSXi—FLi:lw”N_l'



the total exploration cost is therefore
b

Rp — o+ min(Xp — Xp_1,Rp — Xp) E[min{D;}] = /”“ P(min{D;} > X)dx

+ﬁ7Rp+m|n(Xp+lfRp,Xp+27Xp+1,...,ﬁ7XN). : 0 :

b
. N+1 X\N
Now if Xp—Xp—1 < Rp—Xp, We obtain a cost of E[min{Di}] :/0 (1= (N+1)) dx

. . b
ﬁ_a+(xp_xp—l)+mm(xp+1—Rp»---vﬁ_XN) E[mim{Di}] = m 4
> B —o+(Xp—Xp-1) : N
. and the expected optimal cost function is
=B —a+ min {(X1—-%)} L
Z(N)=b(1+——— 5
If Xp—Xp—1 > Rp—Xp, we obtain a cost off — o + "(N) ( (N+1)2) ©)

Rp —Xp+Min(Xp1—Rp,..., B —xn). Considering two cases |t is clear now that we have a “saturation” effect when we
for the last term, where the minimimum achieved is eithefise more agents, since the cost function goes asymptotically
(Xp+1 — Rp) or not, we see readily that in any case weowardsb. If we add a penalty for using more agents, for
obtain a cost lower bounded by an expression of the for@ample we add a linear termN to Z (N), we can solve

B — a+xi+1—X for somei, and therefore a lower bound on for the optimal number of agents for the task

the cost is agaiff — o+ mini—g_._ n{(Xi+1— %)}

1
Now it is also easy to see that the solution given in the N* — b3 1 (6)
proposition achieves this lower bound, which proves the Ca
recursion forN agents. B wherec, represents the cost per agent. This solution has to

be adapted slightly in order fa¥* to be an integer.

It is interesting to note thalN* grows relatively slowly

With the cost function considered in the previous partith b. For example, the intuition that in order to explore a
clearly there is no benefit in using multiple agents if wajne of length  we need twice the number of agents used
have precise control on the initial position of these agentgs explore a line of lengttb leads to a large overestimate.
We obtain the best possible solution by simply placing one
agent at 0 and letting it travel to the other end of the route.
However, we are interested in the case where agents are
dropped randomly on the path. More precisely, we assunfe Feedback Strategy

in this part that the initial positions are realizationsNofid We now turn to a situation where we have agents with
random variables(y, ..., Xy having uniform distribution on g probabilistic behavior as described in part I. First, we
the interval [0,b]. Using more agents becomes beneficial igonsider the exploration problem with a single agent in the
expectation, as we can reduce the minimum initial inteer:&ontinuous model. Suppose the agent initia”yx@tmoves
between them, which is the only variable part in the optimadjong the continuous version of the lif@,b] with speed
cost (3). u(t)v+ oW, wherev is a positive constany(t) € [—1,+1]

As described in part |, we define the order statistic the control,c the standard deviation is a positive constant
XiN, ..., XnN, Where the notation is useful to keep trackand w is white Gaussian noise with unit power spectral
of the number of agentdl. Now denoteD; = Xin, Di = density. The position of the agent follows the following
Xin —Xi—an for i=2,...,N, and Dni1 = b—Xun. The  stochastic differential equation:
variablesD; are referred to aspacings We are interested in
the distribution and the expected value of min._n+1{Di}. dX = u(t)vdt+ ocdB 7
The distribution of the spacings is a classical result:

I1l. AGENTSDROPPEDRANDOMLY ON THE LINE

IV. AGENTS WITHPROBABILISTIC BEHAVIOR:
CONTINUOUS MODEL

where B; is 1-dimensional Brownian motion. Sinceis
Lemma 3:Let Xi,...,Xy be iid random variables, uni- constant, the individual cost function can equivalently be the
formly distributed on[0,b]. Let cy,...,cni1 > 0, such that time spent moving or the distance travelled.
Nilc <b. Then we have Several strategies can be employed to explore the line
a ON+1 N with one such agent. We first review the optimal control
5T ) result, i.e. a strategy minimizing the expected exploration

b b _ _ _ orati
Proof: For a proof of this result wheln= 1, we refer for time, that can pe |mplem9nted on an agent with positioning
or communication capacities.

example to [2]. The result of the lemma follows by scaling,
i.e. dividing all the quantities by to obtain the base case. Proposition 4: Note X(t) the position of the agent on the
B line. The optimal feedback law(X(t)) to bring the agent in

P(D1>cy,...,Dny1 > Cng1) = (-

Takingcy = ... =cny1 =X, we getP(mini=1_n+1{Di} > minimum time to O orb is:
X) = P(D1 > X,...,Dny1 > X) = (1= (N+2)(x/b)N if 0 < U= -1 ifX() €[, 2]
b I . = ]
X < xp1- S0 the expected value of the minimum interval _ b
length is u=-+1 if X(t) € (3,0



The minimum expected time to hit the boundary at Obor discrete case for example, this is given by the ergodicity of

is: the underlying Markov chain describing the position. Again,
o 022w [ 2 b (9) can be used to obtain the expected tifgenecessary to
¥ 32897 [37 11 if X0 <3 finish the exploration. In the casg < b/2 we get:
bx _ 0238 [ e x5y btxo o2 [ 20 2
v 2p® |8 7 1T X223, To=———25|1+e & —2e o2|. (12)
v 2v2

Proof: Let f(x,t) = min,E{t —t}, wheret denotes tpq gifference WithTopt is then found to be bounded in every
the first time the agent hits the boundary at Oborandx  -5¢e as follows:

is the initial position of the agen&f denotes the expected 5
. - . . . o2 —vb

value givenX(0) =x). The dynamic programming equation Tol — Topt < —— (1—e62 )
for f is [3]: Y ’

of ) of 1 ,0%f which tells us that we are not loosing much if we do not
— 5 (6 1) = MiMel g1y {1+ uv—- (%) + 50755 (xt } implement any feedback. - N

. ) L Because in practice the agent has limited autonomy, it is
It is reaafdny seen that the minimization occurs far=sefy| to know more about the distribution of the exploration
_Slgn(ﬁ(xvt))’ and the twice continuously differentiable time. Let us describe the position of the agent by the process
solution of the corresponding equation with boundary cornx; starting atXo = X, and consider the time necessary for
ditions f(0,t) = f(b,t) = 0 is given in the proposition. M  the agent to be absorbed at 0 with a high enough probability,

Proposition 4 tells us how to hit optimally the first bound-treatingb as a reflecting barrier. A bound on this time is
ary. Itis intuitively clear that once the first boundary has beegbtained by considering an auxilliary procegsdescribing
hit, the control should remain constant telling the agent tthe movement of an agent with the same dynamics but on
travel as fast as possible to the other boundary. The procegs infinite line (i.e. without barriers at 0 arg). We have
describing the agent position then reduces to a Brownian
motion with drift between a reflecting barrier (the boundary P(X = 0X0 = Xo) = P(% < 0Yo = X0). (12)
already hit) and an absorbing barrier (the second boundagpe reason is simply that before hitting 0, both processes
to reach). Here we add a lemma based on the calculatiopgye the same behavior: but orehits 0 we know for sure
in [4] for this process, that is useful to obtain closed-formpat it will remain there, wherea might become positive
results in the following. again after it hits O for the first time. From this idea we get

Lemma 5: Consider the agent subject to constant controfhe following proposition.

moving towards a targét=0 or b. If E(7|Xp) is the expected Proposition 6: Let 0< & < 1 anda be given by®(a) =

time for the agent to reach the target, we have: 1 a0 2 . :
—anfme 2dz=1-¢. Suppose without loss of generality

E (/%) = lh—x| o* {e%w —e%ﬂ (9) that the agent is initially ako < b/2 and therefore told to
v 2v2 move to O first. The agent has reached 0 with probability at
Hence, using (9) and proposition 4 gives immediately thi¢ast 1— € for t > to, whereto is given by
to.tal optimal expeqted tim§9pt necessary to explore the !ine Xo Q0 /Xo\3 022
with one agent using position feedback. For example in the to= vV ( ) z
casexp < b/2 we get:

\Y

(13)

Proof: Write Y; = (xo — Vt) + o/tx, where y is a

_bi+x c? o bRl v random variable with standard normal distribution. Then
Topt = > 1 eocs +e o e o (10) Vi— . ) )
v 2v we solve forP(x < 6—\/)‘{0) > 1—e¢. This is obtained for
Note that the agent is faster than in the deterministic cas;L.Lf’i" > a. Solving for equality in this inequality, we obtain

B. Open-Loop Strategy for One Non-Compliant Agent. for to:

The implementation of the optimal policy requires that the to= 20+ a?0? + Axoy
agent knows its exact position on the line at each instant, at v
least with respect to the poiby'2. In the rest of this section, Thjs is simplified to obtain a lower bound as follows:
we discuss “open-loop” strategies, assuming the agents used
do not have the capacities to receive feedback instructions ao (
-+

2

2
1
X0 a262)2 oo

v 42

during the exploration. A straightforward approach is to see
at the beginning of the mission which is the endpoint closest
to the initial position. Next, tell the agent to move first 2 o\ %
s o > oo [(Xg ococ)?
towards that endpoint until it reaches it, and then towards = <+ >
the other endpoint until it reaches fit. VoAV
With a constant control, we know that an agent will a?c?
eventually reach a given target with probability one: in the V2

<
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using /X+y < /X+,/y for x,y > 0. n /,__m\

a0

w 2 2
Remark 7:For o > 0, we have[; e zdz< le 7. In

particular whenot > 1 and € < iﬂ we obtain a more o7 x/

conservativezbound which is easier to apply , choosing sof |
. i

such thate= > < \/2r¢ i.e. a > 2In%. af |

e
Remark 8:An exact expression for the distribution of _ ||

. . . o
the exploration time can be seen as a special case of t" |
calculations in [5]. However, our bound above is easier t -z

interpret and sufficient for our purpose. ol
From the proposition, we can immediately conclude the |
for 0 < € < 1/2 and the agent going to 0 and thenhp .
the line will be completely explored with probability at least - S~
1—2¢ for t > t1, where: oo L L L\
1 o 01 oz 0.3 0.4 Uf 06 o7 0.8 [1R] 1
b+x  ac | [(b\? (X\i|  202c?
b= Vv + T (v> + (V) V2 Fig. 4. Expected exploration reward. Parameters:l,c =2,b=100R=
100Qy; = 10°2,7» = 1. The optimal rewar@opt = 94 is obtained for =

Note that this simple open-loop strategy is asymptoticall9-21.
optimal in the limit whereb — o, since(b+xg) /v is the time
for a deterministic agent to explore the line. Also, at the limit
whena =0, i.e. ¢ = 1/2, we obtain the same speed as in Consider the following scenario. We assume that we col-
the deterministic case, provided we can be satisfied with|act an expected reward which is a function of theected
very low probability of success. In fact the bound is not tightime to finish the exploration. Hence, let us consider an
due to the crude use of Boole’s inequality to obtair 2e  expected reward of the forRd—1to/(1-¢)) (more precisely,
for the probability of success in the two successive travehis should be a lower bound on the expected reward that
periods. If we look only at the travel from to 0 in the we can achieve). There is also a linear cps$ associated
proposition, we see that in fact we can fasterthan in the  to the use of agents with a greater autonomy which are more
deterministic case by allowing to be greater than/R, i.e. expensive. The total expected reward is then

a < 0. This appears natural as we can exploit the possibility (o)
that the speed might take values well above its mean. Z(e)=Re - vto(e), Rmn,2>0 (14)
C. Agents with Limited Autonomy. Since we can use multiple agents to finish the task, we

Suppose we have an infinite number of non-compliarwill not necessarily need to require a high probability for
agents that we can use to explore the interMabl], all one agent to finish correctly. There is a trade-off between the
starting fromb at the beginning of the mission. The missiondevelopment of better agents with a greater autonomy and
terminates when an agent reaches 0. These agents work urither reward that we can collect from them. Moreover, with
the open-loop policy described in the previous paragraphultiple agents we should be able to use the cases where the
since it was argued that in general, adding position feedbackndom component of the speed allows a faster execution.
does not increase dramatically the performance. We illustraléherefore, the optimad increases with the varianae.
in this part applications of the previous results for two multi- Various shapes can be obtained for the funcégn) for
agent exploration scenarios. different choices of parameters. Fig. 4 is an illustration for

If every agent can only run for a timé&, the line specific values.
segment exploration problem can be seen as a Monte-CarloOnce we have computed the optimal we might be
algorithm[6]; that is, the algorithm might sometimes producénterested in knowing how many agents will actually be nec-
an incorrect answer but we are able to bound the probabiligssary to perform the exploration in practice. As mentionned
of that incorrect answer using (13). The running time of thigarlier, the expected number of agents used until one of them
“algorithm” is guaranteed to bi(g) (where the notation is finishes is ¥(1— ¢€). Standard Chernoff arguments apply
showing the dependance énexplicitely) and the probability to the corresponding geometric sequence to show that the
of the result being correct is at least-¥. To improve the number of agents used will be close to this expectation with
probability of success of a Monte-Carlo algorithm, we simphhigh probability. Looking back at the example illustrated on
run it repetetively, trading-off running time. This means forFig. 4, we obtain an optimal number of agents of about
our task that we can send multiple agents successively, ah@6. Obviously a number of different scenarios can be
let each of them run foty, until one of them finishes the studied in a similar way, but this tells us again that the cost
task. The expected time it takes to finish the exploration isf using multiple agents should be included in reasonable
then upper bounded hy(e)/(1—¢€), since the sucess eventmodels, because the saturation effect already encountered in
follows a geometric distribution with parameter-k. the previous part can be dominant.



V. AGENTS WITHPROBABILISTIC BEHAVIOR: DISCRETE  absorbing barrier (the endpoint to reach) and a reflecting
MODEL barrier (the endpoint already visited). The expected time is

In this part we extend some results of the previous secti@Ptained as a solution of the corresponding subsystem in
to the discrete model. These results would translate directRellman’s equation. For the case=1—p, this system was
to the discrete case, except that using the central limfOlved in[8], [9]. In our case however, we can haseq < 1.
theorem to determine the bound on the expected exploratii't if we consider the random walk with parametgxs g
time would only give us a result in the limit— c. However, Such thatgy =g andpy =1-q (i.e. when the agent would -
a concentration inequality allows us to obtain finite-timg€main idle in the original process, in the modified process it

bounds. moves in the right direction), we obviously reach the target in
a shorter time. The lower bound given in the proposition can
A. Optimal Closed-Loop Policy for a Single Agent therefore be obtained from [8], for our case whqre 1/2.
The behavior of a non-compliant agent in the discrete case [ ]

was described in part I. Remember that now we want to This result can be used as before to argue that adding
explore a line graph wittb+ 1 vertices. An agent moves position feedback does not add a lot to the performance of
on the line following a controlled random walk: at a giventhe agent. This is because even in the optimal case, the agent
period, it goes in the required direction with probabilipy will have to travel from the first hit boundary to the second
stays where it is with probability 2 p—q and goes in the one, and on this phase there is no difference between open-
opposite direction with probabilitg. The characteristics of loop and closed-loop strategy. Using (15), we know then that
the boundaries are as follows: if the agent is at 0 and tolthe optimal policy will have a cost of at leaby (1 — 2q).

to go left, it will remain where it is with probability £q During the first phase, we can expect from the continuous
and go right with probabilityg. If told to go right, it will go  model result that the feedback performance is also relatively
right with probability p and stay at 0 with probability 2 p  close to the open-loop performance. We do not make the
(asumep > ). The boundary &b is described symmetrically. argument more formal here.

Suppose that a single agent is initially at skg on the .

discrete line, and that we want to explore the line whild®- Open-Loop Policy

minimizing the expected exploration time. To determine the As in the continuous case, we consider simple open-loop
optimal policy minimizing the expected cover time for thepolicies that are in practice a lot easier to implement and
corresponding controlled Markov chain, we can use a stashould perform relatively well with respect to the optimum.
dard dynamic programming approach. This is summarize8o for an agent with limited autonomy, we tell the agent
in the following proposition, which parallels the continuousto go towards the closest endpoint for a fixed maximum
case. It can be proved using the value iteration method asmber of steps, and then to switch direction and go towards
described in [7], for a stochastic shortest path problem athe other endpoint again for a fixed number of steps. If the
a finite number of states. Under these conditions, Bellman&gent has infinite autonomy, it goes in each direction until
equation holds. Since the result is now intuitively clear anit reaches its target, which happens with probability one.
the proof is straightforward but lengthy, we omit it. The implementation of the policy only involves mission pre-

Proposition 9: The optimal policy to explore the discrete planning and no online re-planning.
We can derive a result analogous to the bound on the

line in minimum expected time with a non-compliant agent ; ; ; . .
P P 9 éploratlon time (13) in the continuous model. Consider

is to always send the agent towards the nearest still unvisit& . S
endpoint. an agent travelling under constant control from its initial

positionxg towards 0. IfX, represents the position at tinme
Since we know the optimal policy, we can compute thef the agent moving between the two barriers (absorbing
corresponding optimal expected cost (at least numerically) a§ 0, reflecting atb), and Y, is the position of an agent
a solution of the linear system corresponding to Bellman'starting from xqg and moving on an infinite discrete line
equation, where we know the result of the minimization fowhich is an extension of our interval, with the same transition

each state. Solving the linear system analytically is difficulprobabilities asx, (but without barriers), we have:
compared to the continuous case calculation, and instead we

simply provide a lower bound result analogous to lemma 5 P(Xn=0Xo =X0) > P(Ya < 0Yo =X0), Vn

Lemma 1_0:Let E(7lx) b_e the Optim?'_ expecte_d travel pofing Z1,7Z5,... iid random variables wittP(Z; = —1) =
cost.for a single non-compliant agent initially at sikgand P, P(Zi=0)=1—p—q, P(Z = 1) = q. Then we have:
moving under constant control towards 0. We have

Yo = Xo

b-+1 1— X0 n
E(tlo) > e 4 [1— (q) %Yo+, nz1
15 =

“1-29 (1-0q)°(1-2q)? q

. ) ) Let u and o be the mean and the variance &4f
Proof: This lower bound is obtained as follows: the

dynamics of the agent follow a random walk between an U=-p+q, o=p+g+2pq—p’>—0’



We assumep > g and thereforeu < 0. Notice thatv = |u|. VI. CONCLUSIONS

With these notations, we have: Two simple multi-agent line exploration problems were

considered in this paper. The optimal policy for exploring

the line with N agents seeking to minimize the sum of

without loss OE generality that the non-compliant agent startgejr travelled distances was obtained. For agents dropped
at 0<% < [3]. Then the agent moving under constanf,nqomly on the line, it was shown that adding a cost

control towards 0 has reached 0 with probability at Ieasﬁroportional to the number of agents leads to an optimal

(1—¢) for n>no, with number of agents to use for the task. In a second part,
X0 ao X\ a?e? 1 we considered an exploration problem using non-compliant
Np=—+— ( ) —+ o (16) agents with limited autonomy. Again it was argued that the
v v v 3v number of agents used to perform a given task should be
If i =0, obviously we takeno = 0 since it means that considered as an important question. In practice using more

we start at the absorbing barrier. Note the similarity to th@gents has an associated cost and might not always lead to
expression obtained in the continuous case, in particulardramatic increase in the final performance.
when we use the expression immentionned in remark 7. In

Proposition 11:Let 0< € < 1, anda = ,/2In%. Assume

\Y

the limit wherexo is large, we havey = 32(1+0(1)). If we REFERENCES
interpretv = |u| as the mean speed of the agent, this resul{i] R. Durrett, Probability: Theory and Examplesrd ed.  Duxbury,
says that asymptotically fog andb large we do not have to 2004.

. . . . .. ..[2] H. David and H. NagarajaDrder Statistics3rd ed. Wiley, 2003.
Walt a lot more in the stochastic case than na determm'su‘%] W. Fleming and R. RishelDeterministic and Stochastic Optimal
situation where we have an agent moving at speed Control. Springer, 1975.

. _<h : ; e [4] M. Domingé, “Moments of the first passage time of a wiener process
. PrO_Of' Let S’_ N _Zi:_l Zi. We will use Bernstein's with drift between two elastic barriersJournal of Applied Probability
inequality for our distribution ory; (see for example [10] vol. 32, pp. 10071014, 1995.
for a survey of concentration inequalities): [5] ——, “First passage time distribution of a wiener process with
drift concerning two elastic barriersJournal of Applied Probability
ns2 vol. 33, pp. 164-175, 1996.
[ — (17) [6] R. Motwani and P. Raghavaiandomized Algorithms Cambridge
202+25/3 University Press, 1995.
[7] D. BertsekasDynamic Programming and Optimal Contrdind ed.

V6 >0, P(Sy—un>én) < exp(

Since u < 0, we can chooseg integer such thahgu < - Qﬁ\f/na SﬁielntiTﬁﬁ, 2003, vol. 1”-(b fecting and an absorbi
_ _ X0 . Weesakul, “The random walk between a reflecting and an absorbing
¥o- Then letd T p, we haves > 0. barrier,” The Annals of Mathematical Statistje®I. 32, no. 3, pp. 765—

Now letn be an integem > ng. Then we havé—Xg, +) C 769, 1961.
[—Xon%,—i—m) thereforeP(Sn > —XO) < p(s1 > —Xon%)- More- [9] A. Blasi, “On a random walk between a reflecting and an absorbing

barrier,” The Annals of Probabilityvol. 4, no. 4, pp. 695-696, 1976.
S. Boucheron, O. Bousquet, and G. Lugd3gncentration Inequali-
ties Springer-Verlag, 2004, vol. 1099, pp. 208-240.

over, using (17) and our definition @&, we have [10]
n
P(S12 o) = P(Sy— i = (~ 2 )
No No
n n(R2 +u)?
P& > —x—)<exp| —-—5—5
Np 202 — %(% + ,u)

Note that with our constraint o8, 262 — %(n% +u)>0.
Sincen > ng andP(Y, > 0|Yo = Xo) = P(Sy > —Xo), we obtain
finally

2
P(Xn # 0[X0 = X0) < exp(— Znoc(:o E?ﬁﬂ nou)) (18)

To obtainP(X, # 0|Xo = Xg) < € for £ > 0, it is sufficient
to have
(Xo+ Nop)?

1
o2 2 >In—
Noo? — 5(Xo + Not)

™

We obtain the value fonp given in the proposition by
considering only the solution greater thggy|u|. The final
expression is simplified as in the proof of proposition 6.
]
Since proposition 11 is almost identical to proposition 6,
it follows that our discussion on multi-agent exploration in
the continuous model is valid for the discrete model as well.



	cover2656.pdf
	leny_feron_lineExploration.pdf

