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Abstract

We present an approximation algorithm for the traveling salesman problem
when the vehicle is constrained to move forward along paths with bounded cur-
vatures (Dubins’ vehicle). A deterministic algorithm returns in time O(n3) a tour
within

((
1 + max

{
8πρ

Dmin
, 14

3

})
log n

)
of the optimum tour, where n is the num-

ber of points to visit, ρ is the minimum turn radius and Dmin is the minimum
Euclidean distance between any two points. A randomized version returns a tour
with an expected approximation ratio of

((
1 + 13.58ρ

Dmin

)
log n

)
. This very simple al-

gorithm reduces the Dubins traveling salesman problem to an asymmetric traveling
salesman problem on a directed graph.

1 Introduction

In the Traveling Salesman Problem (TSP), we are given n nodes, and for each pair (i, j)
of distinct nodes, a distance dij. We want to find a closed path that visits each node
exactly once and incurs the least cost, which is the sum of the distances along the path.
The distances need not be symmetric, i.e. we can have two nodes i, j with dij 6= dji,
in which case the problem is called the asymmetric traveling salesman problem (ATSP).
In the metric TSP, the distances satisfy the triangle inequality. A subcase of the metric
TSP is the (planar) Euclidean TSP (ETSP), where the nodes lie in R2 and the distance
is the usual Euclidean distance.

Computing good TSP tours efficiently is of interest in the area of aerial surveillance.
As we are increasingly interested in developing autonomous vehicles, the question of how
these vehicles should behave usually leads to optimizing a given objective function, for
example minimizing the distance traveled when the task is to explore a set of locations.
An important difficulty arises, however, when the problem involves planes, underwater
vehicles, cars and other vehicles with significant dynamics: the paths obtained from
algorithms solving the Euclidean TSP are infeasible. Kinodynamic planning refers to
the path planning problem when the kinematic constraints of the vehicle are taken into
account. The methods developed in this field aim at finding a trajectory from an initial
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position and configuration to a final position and configuration, usually while avoiding
potential obstacles. In this paper, we study a different problem. We want to optimize
trajectories visiting a specified set of points, but the configuration of the vehicle at these
points is free as long as the kinematic constraints are satisfied.

We focus on algorithms computing tours for the Dubins’ vehicle, a problem which was
recently considered in [10]. The Dubins’ model [3] is a simple but efficient way to handle
the dynamic characteristics of fixed-wing aircrafts. It gives a complete characterization
of the optimal paths between two configurations for a vehicle with limited turning radius
moving in a plane at constant speed.

The complexity issue of our algorithms is an important part of the analysis, since
the path planner is usually only one component of a general scheduling system, and
therefore its task should not become prohibitively time-consuming. The TSP is NP-hard,
even in the Euclidean case [8], and therefore we are interested in efficient approximation
algorithms. More precisely, an α-approximation algorithm (α ≥ 1) for a minimization
problem with optimum OPT is an algorithm that produces in polynomial time a feasible
solution whose value Z is within a factor α of the optimum, i.e. such that

OPT ≤ Z ≤ α OPT.

It is known that in the most general case, there can be no approximation algorithm for
the TSP unless P=NP. But if the distances satisfy the triangle inequality, Christofides’
algorithm [2] gives a 3/2-approximation for the symmetric TSP, and there is a (log n)-
approximation for the ATSP [4] (where n is the number of points, and log denotes
the logarithm of base 2. No constant factor approximation for the ATSP is currently
known). For the ETSP, Arora [1] gave a polynomial-time approximation scheme that
can approximate the optimal tour within (1 + ε) for any ε > 0. The analysis of our
algorithm will show that we have a O( log n

Dmin
) 1 approximation for the Dubins TSP, where

Dmin is the minimum Euclidean distance between any two points in the set.
This paper is organized as follows: in section 2, we recall some facts about point-to-

point Dubins’ paths. Then in section 3, we present a simple approximation algorithm for
the Dubins’ traveling salesman problem (DTSP) and compare it to the approach taken
in [10]. Section 4 gives a randomized version of the algorithm that achieves a slightly
better approximation factor. Section 5 presents computational results, and finally we
conclude in section 6 on the tightness of our analysis and possible improvements.

2 Point-to-Point Dubins’ Paths

We consider a point vehicle moving at unit speed (without loss of generality) in the
plane, with a constraint on its maximal turning rate. More formally, given a continuously
differentiable path P : I → R2 parametrized by arc length s ∈ I, the average curvature
of P in the interval [s1, s2] ⊆ I is defined by ‖P ′(s1) − P ′(s2)‖2/|s1 − s2|. We require
that the average curvature of the vehicle’s path be at most ρ in every interval. Denote
the configuration of the vehicle by (X, θ), where X is the location of the vehicle in the
plane and θ ∈ (−π, π] is its heading, i.e. the angle that the velocity vector makes with
the x-axis. The goal is to design an efficient approximation algorithm which, given a
set of point locations in a bounded square (in an obstacle-free environment), returns a

1We say f(n) = O(g(n)) if there exists c > 0 such that f(n) ≤ cg(n) for all n, and f(n) = Ω(g(n)) if
there exists c > 0 such that f(n) ≥ cg(n) for all n.



permutation of the points specifying the order of the visits, as well as headings for the
vehicle at each point.

Dubins [3] characterized curvature constrained shortest paths between an initial and
a final configuration. Let P be a feasible path. We call a nonempty subpath of P a
C-segment (resp. S-segment) if it is a circular arc of radius ρ (resp. a straight line
segment). We paraphrase the following result from Dubins:

Theorem 1 ([3]). An optimal path between any two configurations is of type CCC or
CSC, or a subpath of a path of either of these two types. Moreover, to be optimal, a CCC
path must have its middle arc of length greater than πρ.

In the following, we will refer to these minimal-length paths as Dubins’ paths. When a
subpath is a C-segment, it can be a left or a right hand turn: denote these two types of C-
segments by L and R respectively. Then we see from theorem 1 that to find the minimum
length path between an initial and a final configuration, it is enough to find the minimum
length path among six paths, namely among {LSL,RSR, RSL,LSR,RLR,LRL}. Each
of these paths can be explicitly computed (see for instance [11]) and therefore finding the
optimum path and its length between any two configurations can be done in constant
time.

Note that, in our case, the configuration of the vehicle at each point is not completely
specified. Only the position of the points is known, the headings of the vehicle at these
points must be found. Since we do not expect to obtain the exact optimum headings,
we will need a lemma based on a result due to Jacobs and Canny [6] on the difference in
length between two paths when only the initial and terminal headings are different. In
general, if we consider a path of Dubins’ length pij between two configurations (Xi, θi)
and (Xj, θj) and make an error up to δ ∈ (−π, π] on the initial and final headings, we
can derive a multiplicative bound on the perturbed path p̂ij as follows.

Lemma 2. Let dij be the Euclidean distance between Xi and Xj. We have:

p̂ij ≤

(
1 + 2ρ max

{
3|δ|+ π| sin δ

2
|

dij

,
|δ|+ 4 arccos

(
1− | sin δ

2
|/2
)

πρ

})
pij. (1)

See [6] for a proof of this lemma. Let us mention that the two terms in the max on the
right-hand side correspond to the cases where the initial Dubins’ path is a CSC path with
opposite initial and final turning directions and a CCC path respectively. Perturbations
of a CSC path with identical initial and final turning directions are dominated by the
first term.

3 An Approximation Algorithm for the DTSP

Savla et al. [10] gave an algorithm for computing Dubins’ TSP tours, called the “alter-
nating algorithm”. It works as follows: given a set of n points, the optimal Euclidean
TSP tour is computed, and the order of visits for the ETSP is used for the Dubins’ tour.
It is then necessary to obtain a feasible path through these ordered points. Following
the edges of the tour, all odd-numbered edges are retained (i.e. the subpath is a straight
line) as well as the corresponding headings, and the even-numbered edges are replaced
with Dubins’ paths (see Fig. 1).

The alternating algorithm is not an approximation algorithm for the Dubins’ TSP in
the sense of the definition given in the introduction. It could easily be made a polynomial
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Figure 1: DTSP tour obtained from the alternating algorithm for a set of 10 points.

time algorithm by using Arora’s (1 + ε)-approximation of the ETSP instead of an exact
algorithm. But a more critical issue is that there could be little relationship between
the Euclidean and Dubins’ metrics, especially when the Euclidean distances are small
with respect to the turning radius, which is the case we are mainly interested in for the
Dubins’ TSP. An algorithm for the Euclidean problem will tend to schedule very close
points in a successive order, which can imply long maneuvers for the aircraft. We will
come back to this point in section 5. In the following we suggest a simple approximation
algorithm which does not rely on the Euclidean solution.

The major difficulty is to determine the headings. We argue however that we have
much freedom in selecting them, provided we can be satisfied with a relatively weak
performance bound. A first deterministic algorithm can be described as follows:

1. Fix the headings at all points to be 0.

2. Compute the n(n− 1) Dubins distances between all pairs of points.

3. Construct a complete graph with one node for each point and edge weights given
by the Dubins’ distances.

4. We obtain a directed graph where the edges satisfy the triangle inequality. Compute
the solution of the asymmetric traveling salesman problem on this graph, using the
log n-approximation algorithm of Frieze et al. [4].

The complexity of the three first steps is O(n2). The algorithm for solving the ATSP
runs in O(n3), so overall the running time of our algorithm is O(n3).

To analyze the performance guarantee, we use the bound (1). At each point, we can
make an error up to |δ| = π at each point. Thus the bound on the length becomes:

p̂ij ≤
(

1 + max

{
8πρ

Dmin

,
14

3

})
pij = C pij, (2)

where Dmin = mini6=j{dij}, and C is defined by the equation.
Note that theoretically there is no reason for Dmin to be bounded from below, and

therefore the upper bound (2) can be arbitrarily bad. In practice however, in the context
of aerial surveillance, we can restrict our study to the situation where the points have a
minimum distance between them, for example equal to the coverage radius of the sensors



of the aircraft, which allow very close points to be observed at the same time. This can
be justified by the following greedy procedure. Suppose we can observe at each instant
the area inside a disk of radius Dmin around the aircraft. For a given set of points, start
by picking a point arbitrarily, and discard all the points which are within a distance Dmin

of this first point. Next, pick a second point arbitrarily among the remaining points, and
continue similarly, until all the points have been considered. The points selected have a
distance greater than Dmin between them, and finding a trajectory visiting these points
is enough to cover the complete initial set. Therefore it is enough to run our algorithm
for a set of points with minimum pairwise distance bounded from below by Dmin, and
this implies that for practical purposes Dmin can be considered as a constant independent
of n.

Call OPT the optimal value of the Dubins TSP and σ∗ the corresponding optimal per-
mutation specifying the order of visits. We have OPT =

∑n−1
i=1 pσ∗(i)σ∗(i+1) +pσ∗(n)σ∗(1) :=

L({pij}, σ∗), where the definition of the functional L should be clear from the equation.
Considering the permutation σ∗ for the graph problem (where the edge weights are the
perturbed distances {p̂ij}) and σ̂∗ the optimal permutation for the graph problem, we
have

L({p̂ij}, σ̂∗) ≤ L({p̂ij}, σ∗) ≤ C L({pij}, σ∗)

Now on the graph with weights p̂ij, we can solve the traveling salesman problem in
polynomial-time with an approximation ratio of log n, so calling σ̂ the corresponding
solution we have:

L({p̂ij}, σ̂) ≤ log n L({p̂ij}, σ̂∗) ≤ C log n L({pij}, σ∗) = (C log n) OPT.

Therefore, we obtain with the specific assignment of headings (or any assignment in fact)

an approximation guaranteed to be within a factor
(
1 + max

{
8πρ

Dmin
, 14

3

})
log n of the

optimum.
We can make several remarks about this algorithm:

• If we randomize the heading assignments, we obtain a better guarantee in expecta-
tion, more precisely we can lower the constant in front of the logarithm, by avoiding
the worst-case analysis assuming δ = π. This is described in section 4.

• A deterministic generalization is to add more discretization levels to decrease the
value of the error δ. At each point, we consider a set of K possible headings, and
we want to select one of them optimally. To each point in the original problem,
we associate a cluster of K nodes corresponding to the K different headings. We
then have to solve a problem called the “generalized asymmetric traveling salesman
problem”, i.e. find a tour through n sets of K vertices, visiting one node in each
cluster (i.e. selecting one possible heading at each point). The generalized traveling
salesman problem can be reduced to the traveling salesman problem [7], although
in practice this might become too complex.

• As we have pointed out, the presence of Dmin could make the approximation ratio
arbitrarily bad in theory. It seems difficult to avoid this term in the performance
bound, as long as the analysis is carried independently on each point-to-point path
as we did above. Consider the path from (0, 0, θi = 0) to (ε, 0, θj = 0), with ε > 0 a
small number: this is just a straight line. But if we make an error δ on θi, as ε → 0



we obtain a Dubins’ path of positive length since the initial and final configurations
are different and the aircraft has to maneuver to change its heading. Therefore the
ratio of the Dubins’ distance of the perturbed path to that of the original path
becomes infinite, however small the error on the initial angle was.

• The log n factor appears to be inherently linked to our reduction to a directed
graph. Note however that discretization and reduction of a kinodynamic planning
problem to a directed graph formulation is standard. The asymmetry is due exactly
to the dynamic constraints (for example, making a U-turn is costly). Working with
a directed graph is not an issue as long as the graph problem is simple like computing
a shortest path, but the situation is worse for more complicated problems such as
the TSP, since much less is known about digraphs. Reducing the log n factor
therefore appears to be quite challenging unless a better approximation algorithm
is devised for the ATSP or a method departing from the traditional discretization
approaches is used (or a hardness result is obtained).

4 Randomized Version

We can modify the algorithm described in part 3 to obtain an interesting randomized
algorithm. Instead of assigning all headings to be 0, we choose the headings randomly
and independently in (−π, π] for each point.

Consider an optimal tour, and two successive points Xi, Xj in this tour. The Dubins’
path between these two points has length pij, and the optimal headings are θi and θj.
Following [6] in the derivation of the bound (1), we know that if we make an error of
δ ∈ (−π, π] on θi, the difference in path length is bounded by:

∆p ≤ ρ max

{
3|δ|+ π| sin(

δ

2
)|, |δ|+ 4 arccos

(
1− | sin δ

2
|/2
)}

. (3)

This leads to the inequality (1) by taking into account the error on θj as well. Now (3)
is derived for a change from θi to θi + δ in the initial heading. Of course, we do not know
the optimal θi so the natural idea is to choose (θi + δ) uniformly in (−π, π], in which case
the error δ is distributed uniformly in (−π, π] as well. This implies that ∆p becomes a
random variable whose expectation is bounded by:

E[∆p] ≤ ρ

∫ π

−π

max

{
3|δ|+ π| sin δ

2
|, |δ|+ 4 arccos

(
1− | sin δ

2
|/2
)}

dδ

2π
≤ 6.79ρ.

Replacing the corresponding expression in (1), we obtain as a final upper bound:

E[p̂ij] ≤
(

1 +
13.58ρ

dij

)
pij. (4)

It is also possible to refine the bound using the fact that a CCC path has length at least
πρ as in section 3, but for our purpose Dmin and ρ will be of the same order and (4) is
then enough.

We can now reproduce the analysis of part 3, using only the linearity of expectation.
Thus, we see that we have a randomized algorithm which, given a set of n points, returns

a Dubins’ tour whose expected length is within
(
1 + 13.58ρ

Dmin

)
log n of the optimum.



5 Computational Experiments

In this part we describe some computational experiments for the randomized algorithm
described in part 4. The algorithm was implemented in MATLAB. For the computa-
tion of the ATSP tours, we did not implement Frieze’s algorithm, rather we used LKH,
Helsgaun’s implementation of the Lin-Kernighan heuristic, available as a C-code [5]. Our
main program calls this routine when asked to solve an ATSP. For the sake of comparison,
we also implemented the alternating algorithm, using LKH for computing the Euclidean
TSP tour as well. LKH has excellent performance on real-world problems, and solves
the small instances that we considered exactly without difficulty. Therefore our imple-

mentation of the algorithm returns a tour of expected length less that
(
1 + 13.58ρ

Dmin

)
times

the optimum length for the problems considered, i.e. the log n factor did not appear. In
practice, for a given instance of the problem, we generated 10 tours using 10 different
sets of random headings, and returned the best tour obtained. The difficulty in verifying
the performance of the algorithm is that it is hard to evaluate the true optimum, at least
when using a naive method which would consist in computing all tours for all possible
headings of a sufficiently fine grid at each point.

We ran simulations for different sizes of point sets; the sets consisted of points gen-
erated randomly and uniformly inside a square of side length 5. In all simulations, the
turning radius of the vehicle was fixed to 1. In order to compare the performance of the
alternating algorithm and our algorithm, for n fixed, we generated 10 different sets and
compared the average lengths returned by the two algorithms on these samples. The
results are shown on Fig. 2. As expected, when the density of the points increases, the
performance of the alternating algorithm decreases with respect to the performance of
our randomized algorithm. For points far apart however, the Dubins problem becomes
similar to the Euclidean problem, and therefore we can expect the alternating algorithm
to perform almost optimally. In practice, to obtain an algorithm which can handle var-
ious point configurations, we can compute tours with both algorithms and choose the
best one.

For sufficiently dense sets of points, it becomes clear that the ordering of the Euclidean
tour is not optimal in the case of the Dubins’ TPS. In Fig. 1, we can see that slightly
modifying the top loop should provide a better tour, if we modify the ordering of the
group of 3 points. In general, as previously mentioned, we expect that the Euclidean
tour will schedule close points successively, which may result in long maneuvers. The
alternating algorithm tends to create numerous loops that become problematic with dense
sets of points (see Fig. 3).

We conclude this section by commenting on the tightness of the performance bounds
obtained in parts 3 and 4. For random sets as considered above, the worst case bound,
based on the point-to-point worst case performance, is far from the actual performance,
typically by an order of magnitude or two. This bound is very conservative, for example
the term 1/Dmin is present even if the two closest points are not scheduled in successive
order. This calls for a more global analysis of the performance. Note also that in our
experiments, we simply chose the points uniformly at random, without imposing any
restriction on Dmin. The fact that the square can be covered by O(n) boxes of side

length n−
1
2 tells by a pigeonhole argument that Dmin = O(n−

1
2 ). This means that

our approximation ratio is Ω(
√

n log n) for target points distributed uniformly in the
square. On the other hand, Savla et al. proved in [9] that the expected length of
the optimum Dubins’ tour in this case is Ω(n2/3). This implies that our upper bound
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Figure 2: Performance of the alternating algorithm and the randomized headings algo-
rithm for sets of points of increasing density in a square of side length 5.
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Figure 3: Paths generated by the alternating algorithm and the randomized headings
algorithm for a set of 30 points in a square of side length 5.



on the length returned by the randomized headings algorithm is Ω(n7/6 log n), while
experimental results show that we should expect a sublinear bound (see Fig. 2).

6 Conclusions

We presented a simple algorithm to compute efficiently tours within sets of points for
the Dubins’ vehicle, which models as a first approximation the dynamics of a fixed-
wing aircraft. The Dubins’ paths cannot be followed exactly by a real vehicle because
instantaneous changes of acceleration are necessary. However, our algorithm is useful
for obtaining a first approximation of the trajectory for instance sizes that could not
be handled by more more precise models. Through simulation, we demonstrated that
the performance of the randomized version of the algorithm is in general better than
for the alternating algorithm, which is based on computing Euclidean tours. This is
supported by the idea that, for dense sets of points, the Dubins’ metric has a behavior
departing significantly from the Euclidean metric. We provided a performance bound
guarantee for the algorithm, however typically the performance obtained is much better
than this worst case bound. Our analysis relied on a point-to-point result, and we expect
that a significantly better analysis cannot be obtained except by adopting a more global
approach. For the randomized algorithm, it would also be interesting to obtain a result
with high probability, to improve on our expected bound.
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