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Abstract— Cooperation between multiple autonomous ve-
hicles requires inter-vehicle communication, which in many
scenarios must be established over an ad-hoc wireless network.
This paper proposes an optimization-based approach to the
deployment of such mobile robotic networks. A primal-dual
gradient descent algorithm jointly optimizes the steady-state
positions of the robots based on the specification of a high-level
task in the form of a potential field, and routes packets through
the network to support the communication rates desired for the
application. The motion planning and communication objectives
are tightly coupled since the link capacities depend heavily
on the relative distances between vehicles. The algorithm
decomposes naturally into two components, one for position
optimization and one for communication optimization, coupled
via a set of Lagrange multipliers. Crucially and in contrast to
previous work, our method can rely on on-line evaluation of the
channel capacities during deployment instead of a prespecified
model. A randomized sampling scheme along the trajectories
allows the robots to implement the algorithm with minimal
coordination overhead.

I. INTRODUCTION

Unmanned Vehicle Systems (UVS) have become critical
assets for intelligence, surveillance and reconnaissance mis-
sions and could be used in the near future for environmental
monitoring, search and rescue missions, intelligent distribu-
tion and transportation, or the exploration of dangerous in-
door environments. UVS consist of a number of autonomous
vehicles or mobile robots that can communicate with each
other to enable cooperative behaviors, and with base stations
for complex data analysis and higher level control purposes.
However, in many situations, e.g., for disaster relief oper-
ations, a wireless communication infrastructure is initially
absent and the robots need to form an ad-hoc network [1].

Much work in mobile robotics has focused on trajectory
planning and deployment under communication constraints,
but generally by assuming very simplified connectivity
constraints and communication models. In particular, the
disc model enables the use of graph theoretical methods
to account for connectivity constraints [2], [3]. However,
such models are inadequate to optimize global performance
metrics for the network, such as bandwidth specifications
between distant terminals, or to exploit the spatial diversity
in the inter-robot channels to adaptively route the traffic.
Interferences are also not taken into account.

Recently, more realistic wireless channel models have
been used in robotics [4]–[6]. Firouzabadi and Martins [7]
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consider a network optimization problem including node
placement and optimal power allocation, and solve it using
geometric programming. Zavlanos et al. [8], [9] consider a
problem similar to the one presented in this paper, including
robot motion planning and packet routing. Other related
communication-constrained deployment problems are treated
in e.g. [10], [11]. However, virtually all proposed approaches,
including our previous work [12], rely on known, and often
deterministic models of the channel gains. In this case, the
resulting trajectory planning algorithms can operate “open-
loop”, without ever relying on wireless channel measure-
ments. Unfortunately wireless channel modeling is notably
difficult, especially for indoor environments [1], and the
robustness of the proposed methods to modeling errors has
been discussed only in a few cases [4], [6].

As described in Section II, we consider communication-
constrained deployment problems, where the goal is to move
a mobile robotic network from an initial configuration to
a desired final configuration appropriate for a given task,
without directly attempting to optimize its transient trajec-
tory. We develop in Section III a primal-dual optimization
algorithm that progressively drives the robots toward a sat-
isfying spatial configuration for the task, while ensuring that
the resulting network can support the desired communication
flows between vehicles and with the base stations. Section
IV details how the algorithm can plan the trajectories using
channel measurements rather than prespecified channel mod-
els. The measurement-based algorithm relies in particular
on a random sampling direction approach proposed in the
stochastic optimization literature [13], [14], which requires
little coordination between the robots. Finally, simulation
results for an illustrative scenario are discussed in Section V.
Formal convergence results for the algorithms can be found
in the full version of the paper [15].

II. JOINT DEPLOYMENT AND COMMUNICATION
OPTIMIZATION

A. Task Potential

A mobile robotic network consists of n robots evolving
in a workspace W ⊂ Rd, with positions denoted x =
[xT1 , . . . ,x

T
n ]T ∈ Wn. We use boldface letters for vector

quantities, and denote [n] := {1, . . . , n}. For simplicity,
we assume throughout the paper that W is compact and
convex. Some of the robot positions may be fixed, so that
these “robots” can also represent a fixed communication
infrastructure composed of base stations, with which the
mobile elements must maintain communication. We consider
high-level motion planning problems where we neglect the



dynamics of the robots, whose positions evolve in discrete
time as

xi[k + 1] = PW(xi[k] + ui[k]), xi[0] ∈W, ∀i ∈ [n]. (1)

Here PW denotes the projection on W used to keep the
iterates within the workspace, and ui[k] is the control input
for robot i ∈ [n] at period k, satisfying the velocity constraint
‖ui[k]‖ ≤ vi.

The quality of the deployment of the mobile robotic net-
work is captured by a potential field G(x) [16]–[18], whose
minimum corresponds to a desired steady-state configuration
x∗ for the group. We call this function the task potential. The
deployment problem for this task potential consists then in
designing feedback control laws allowing the system to reach
x∗ starting from an initial configuration x[0]. For example,
a simple quadratic potential

G(x) = ‖x1 − q∗‖2 (2)

can be used to bring robot 1 to a known target location
q∗. Diverging barrier potentials can be used for inter-robot
and obstacle avoidance in non-convex workspaces [16], [17],
and other potential functions can force groups of robots to
maintain certain formations [18].

For a deployment problem with task potential G, typical
feedback controllers take a truncated gradient form [16]

u(x[k]) = satv(−αk∇G(x[k])) (3)

where αk are prespecified stepsizes, v = [v1, . . . , vn], and
for i ∈ [n]

(satv(u))i =

{
ui, if ‖ui‖ ≤ vi
vi

ui
‖ui‖ , otherwise.

The resulting gradient descent algorithm (1) only leads to
the set of critical points of G in general. We follow this ap-
proach nonetheless, since global minimization of interesting
task potentials for most multi-robot deployment problems is
computationally intractable.

B. Wireless Networking

Because the deployed robotic network must also satisfy
certain communication constraints, the controller (3) must
be modified. Indeed, path loss and interferences make the
achievable wireless communication rates highly dependent
on inter-robot distances. Here we review some terminology
and basic principles of wireless networking, in order to
express these communication constraints quantitatively.

Each robot is equipped with a wireless terminal, and
wishes to deliver communication packets to other robots and
base stations for different application level flows, where a
flow φ is associated to a given final destination dest(φ).
Note that several flows can have the same destination. The
set of flows is denoted Φ. The amount of information for
flow φ ∈ Φ accepted at robot i 6= dest(φ) at time k is
denoted aφi [k], with aφi [k] ≥ 0. The amount of information
for flow φ routed between robots i and j at time k is denoted
rφij [k], with rφij [k] ≥ 0. Finally, the capacity of the link

(i, j) at time k if the robotic network is in configuration
x is denoted cij [k; x]. This capacity is nonnegative and
random, determined by the fading state and the chosen
communication scheme, through coding and the allocation
of transmission time-slots, frequencies and powers [1].

Let us illustrate in more details how the robot positions
influence the channel capacities. Assume that a set F of
frequency tones is available to communicate. For every pair
(i, j) ∈ [n], let hfij [k; xi,xj ] denote the channel power gain
at period k on frequency f , from terminal i at position xi
to terminal j at position xj . Following standard practice in
wireless communications, we assume that {hfij [k; xi,xj ]}f,ij
is the realization of a random vector H[k; x] [1]. Channel
gain models often take the form

hfij [k; xi,xj ]|dB : = 10 log10 h
f
ij [k; xi,xj ]

= lf (xi,xj) + Y fij [k], (4)

where Y fij [k] is a zero-mean random variable modeling
fading and shadowing effects [1]. The function lf (xi,xj)
models the deterministic path loss between positions xi
and xj . Let pfij denote the power used by terminal i to
communicate with terminal j over the frequency tone f .
Many communication schemes result in link capacities that
are functions of the signal to interference plus noise ratios
(SINR)

SINRfij [k; x] =
hfij [k; xi,xj ]p

f
ij

σj + 1
S

∑
(l,m) 6=(i,j)

hflm[k; xl,xm]pflm
, (5)

where σj denotes the noise power at receiver j and 1/S
is the interference reduction due to signal processing, e.g.
S is approximately equal to the processing gain in a
CDMA system [1, chapter 14]. With capacity-achieving
channel codes, we could have for example cij [k; x] =∑
f∈F log

(
1 + SINRfij [k; x]

)
.

Remark 1: Frequency and power allocation optimization
can also be considered in our framework, following [19].
For clarity of exposition, these variables are not included
below, our focus being on the role of controlled mobility on
communication performance.

To ensure boundedness of the queues at all terminals, it
is sufficient to ensure that the long-term average amount
of information accepted at each terminal is less than the
long-term average amount of information forwarded to other
terminals [20]. We denote the long-term averages in the
following by aφi := limT→∞

1
T

∑T−1
k=0 a

φ
i [k] and rφij :=

limT→∞
1
T

∑T−1
k=0 r

φ
ij [k] for i 6= j. Then we have the

constraint aφi +
∑
j 6=i r

φ
ji ≤

∑
j 6=i r

φ
ij , for all φ and all

i 6= dest(φ). Moreover, the long-term average amount of
information circulating on link (i, j) cannot exceed the long-
term average capacity. We assume for simplicity that for
each fixed configuration x, the capacity values cij [k; x]
form a temporal sequence of identically and independently
distributed (iid) random variables, with mean cij(x). By the
strong law of large number, we have cij(x) = E[cij [0; x]] =



limT→∞
1
T

∑T−1
k=0 cij [k; x]. In fact, the algorithm below

works with general ergodic Markov chains instead of iid
sequences, with more technical assumptions for convergence.
For a robotic network in a fixed configuration x, we then
have the constraint

∑
φ∈Φ r

φ
ij ≤ cij(x),∀i 6= j.

We adopt the convention rφdest(φ)j = 0 for all j, a natural
requirement. Finally, we can also have rate constraints of the
form aφi,min ≤ aφi ≤ aφi,max for i 6= dest(φ) and rφij,min ≤
rφij ≤ rφij,max for i 6= j, with aφi,min, r

φ
ij,min = 0 and

aφi,max, r
φ
ij,max = +∞ possible values. Any set of average

rates a := {aφi }i,φ, r := {rφij}i 6=j,φ and final configuration
x ∈ Wn such that the constraints above are satisfied is
said to be feasible. We would like to select, among these
feasible points, one that is (at least locally) optimal according
to a given criterion, including the task potential for the
configuration component.

C. Joint Optimization Problem

We introduce concave utilities Uφi (aφi ) to value the average
admission rates aφi , and convex costs V φij (r

φ
ij) for establishing

communication links. The optimal configuration and wireless
network parameters are then defined as the solution of the
following optimization problem

min
x,a,r

G(x)−
∑
φ∈Φ

∑
i 6=dest(φ)

Uφi (aφi ) +
∑
φ∈Φ

∑
i 6=j

V φij (r
φ
ij) (6)

s.t. aφi ≤
∑
j 6=i

rφij − rφji, ∀φ, ∀i 6= dest(φ) (7)∑
φ∈Φ

rφij ≤ cij(x), ∀i 6= j, (8)

aφi,min ≤ aφi ≤ aφi,max, ∀i 6= dest(φ), (9)

rφij,min ≤ rφij ≤ rφij,max, ∀i 6= j. (10)

For a fixed configuration x, the problem (6)-(10) is convex
in the communication rates a, r. However, the presence of
the configuration vector x makes the problem non-convex
in general, because most useful multi-robot task potentials
G are not convex and the mean capacities cij(x) in (8)
are not concave functions of x. Still, following standard
practice in robotics, one can at least look for a locally optimal
solution to the constrained problem (6)-(10). Moreover, by
using a gradient-based algorithm similar in spirit to (3), we
can obtain a feedback controller driving the robotic network
progressively toward this locally optimal configuration. The
next section introduces a primal-dual optimization algorithm
for this purpose.

III. PRIMAL-DUAL ALGORITHM

We assume in this section that the average channel ca-
pacities cij(x) in (8) are known functions. Problem (6)-
(10) is then a deterministic optimization problem, for which
many nonlinear programming techniques are available [21].
Here we concentrate on a primal-dual augmented Lagrangian
algorithm [21]. Our report [15] motivates this choice.

Define the dual variables λφi ≥ 0, i 6= dest φ, and µij ≥
0, i 6= j, associated with (7) and (8) respectively. We gather

the primal and dual variables in the vectors y = (x,a, r) and
ξ = (λ,µ) respectively. The region defined by W and the
box constraints (9), (10) for the primal variables is denoted
Y. Next, let F (y) denote the objective function (6), and
denote the functions appearing in the constraints (7), (8)
as gφi (aφi , r

φ
i ·, r

φ
· i) = aφi −

∑
j 6=i

(
rφij − rφji

)
, hij(x, rij) =∑

φ∈Φ r
φ
ij − cij(x), with rij = {rφij}φ∈Φ, rφ· i = {rφji}j∈[n],

and rφi · = {rφij}j∈[n]. We can always rewrite an inequality
constraint K(y) ≤ 0 as an equality constraint K(y)+z2 = 0,
with z a slack variable. Doing this for (7), (8) leads to the
definition of the augmented Lagrangian [21, Section 4.2] for
the equivalent equality-constrained problem

L̂ρ(y, z, ξ) = F (y) +
∑
φ∈Φ

i 6=dest(φ)

{
λφi

(
gφi (aφi , r

φ
i ·, r

φ
· i) + (zφi )2

)

+
ρ

2
|gφi (aφi , r

φ
i ·, r

φ
· i) + (zφi )2|2

}
+

n∑
i=1

∑
j 6=i

{
µij
(
hij(x, rij) + z2

ij

)
+
ρ

2
|hij(x, rij) + z2

ij |2
}
,

where ρ > 0 is a penalization parameter, and the variables
zφi and zij are slack variables. Partial minimization with
respect to the slack variables, as detailed in [21, p. 406],
allows us to work with the following simpler version of the
augmented Lagrangian function, which depends only on the
original primal and dual variables

Lρ(y, ξ) = F (y)+ (11)
1

2ρ

∑
φ∈Φ

∑
i 6=dest(φ)

{
(max{0, λφi + ρgφi (aφi , r

φ
i ·, r

φ
· i)})2 − (λφi )2

}
+

1

2ρ

n∑
i=1

∑
j 6=i

{
(max{0, µij + ρhij(x, rij)})2 − µ2

ij

}
.

Many optimization algorithms aim at computing a Karush-
Kuhn-Tucker (KKT) point (y∗, ξ∗) where the necessary
optimality conditions for (6)-(10) are satisfied [21]. Consider
a first-order primal-dual algorithm of the form

y[k + 1] = PY (y[k]− αk∇yLρ(y[k], ξ[k])) (12)

λφi [k + 1] =
[
λφi [k] + βkg

φ
i (aφi [k], rφi ·[k], rφ· i[k])

]λφi,max

0
(13)

µij [k + 1] = [µij [k] + βkhij(x[k], rij [k])]
µij,max
0 , (14)

where PY denotes the projection on the set Y, and ∇y

denotes the vector of derivatives with respect to the primal
variables. The prespecified stepsizes αk, βk can be chosen
constant and sufficiently small, see [15]. We use the notation
[x]ul := max{l,min{u, x}} to project x ∈ R on the interval
[l, u]. The upper bounds λφi,max and µij,max need to be
sufficiently large so that the resulting box region

Ξ := {(λ,µ)|0 ≤ λφi < λφi,max,∀i 6= dest φ,

0 ≤ µij < µij,max,∀i 6= j} (15)

contains the desired Lagrange multiplier ξ∗. They can be set
to +∞ if no such region estimate is known, but otherwise



can be used to significantly reduce oscillations in the primal
variable trajectories, see [22, p. 181]. Upper bounds on
Lagrange multipliers can be obtained for example from
duality arguments [23, p. 6377].

A. Explicit Form and Considerations about Distributed Im-
plementations

This section describes the nice structure given to the
generic primal variable update equation (12) by the sep-
arable form of the augmented Lagrangian (11). First,
for a differentiable function K and parameters λ, ρ,
we have ∇y[(max{0, λ + ρK(y)})2] = 2ρmax{0, λ +
ρK(y)}∇yK(y). We can thus rewrite (12) explicitly as

xi[k + 1] = PW

(
xi[k] + satv

[
− αk

(
∂G

∂xi
(x[k])− (16)∑

l,m6=l

max{0, µlm[k] + ρhlm(x[k], rlm[k])}∂clm
∂xi

(x[k])

)])
,

aφi [k + 1] =

[
aφi [k]− αk

(
− dUφi

daφi
(aφi [k]) + max{0, λφi [k]

+ ρgφi (aφi [k], rφi ·[k], rφ· i[k])}
)]aφi,max

aφi,min

,∀φ, i 6= dest(φ), (17)

rφij [k + 1] =

[
rφij [k]− αk

(
dV φij

drφij
(rφij [k])

+ max{0, µij [k] + ρhij(x[k], rij [k])}
−max{0, λφi [k] + ρgφi (aφi [k], rφi ·[k], rφ· i[k])}

+ max{0, λφj [k] + ρgφj (aφj [k], rφj ·[k], rφ· j [k])}
)]rφij,max

rφij,min

,

∀φ, ∀i 6= dest(φ),∀j 6= i. (18)

In large robotic networks, distributed algorithms are
preferable for their scalability and tolerance to faults. As-
sume that robot i ∈ [n] is responsible for updating its position
vector xi[k], its traffic admission rates ai[k] := {aφi [k]}φ and
outgoing link rates ri ·[k], and the dual variables λi[k] :=
{λφi [k]}φ and µi ·[k] := {µij [k]}j . Using its own local
information, it can immediately update the dual variables µi ·
according to (14). By also keeping track of the rates r·i[k]
from its one-hop neighbors, it can also immediately update
the variables ai, λi according to (17) and (13). Finally, to
update its link rates rij according to (18) for some neighbor
j ∈ [n], it also needs access to the rates rj ·[k] and r· j [k]
of information sent to and from node j. In other words, all
the mentioned variables so far can be updated with at most
two-hop information.

The complexity of the robot position update (16) depends
on the separability properties of the gradient of the task
potential G and on the number of links (l,m) with which
robot i might interfere, i.e., for which ∂clm/∂xi is not zero.
If interferences can be neglected, e.g., with a large processing
gain S in (5) or an appropriate time and frequency allocation
scheme, then the capacity of link (l,m) depends only on the

positions of robots l and m, so ∂clm/∂xi is non-zero only
for l = i or m = i and the sum in (16) can be computed
from the information collected from the one-hop neighbors.

IV. SAMPLING-BASED ALGORITHM

The algorithm presented in Section III requires a model
of the average channel capacities cij(x), but in practice such
models are notably difficult to devise, and only provide rough
approximations [1, chapter 1]. Practical systems must rely on
measuring the channel gains (4) and estimating the resulting
link capacities. Since UVS can be deployed in a priori
unknown environments for which channel strength maps
are not available, deployment algorithms should take the
channel sampling requirement into account. In this section,
we show that this is possible by only modestly increasing
the complexity of the primal-dual algorithm.

A. Two-time-scale SPSA Algorithm

We assume for simplicity that we can measure the instanta-
neous and random channel capacities cij [k; x[k]] introduced
in Section II-B. In practice, only the SINR (5) or channel
gains (4) might be measurable, and the capacities should then
be evaluated based on the chosen communication scheme.
Recall from Section II-B that cij(x) is the ergodic limit of
the random variables cij [k; x], for x fixed. To implement
the iterations (14), (16) and (18) of the algorithm, esti-
mates of the link capacities cij(x[k]) and of their gradients
∂clm(x[k])/∂xi are required, and can only be obtained from
the measurements cij [k; x[k]]. We adopt a two-time scale
approach [14, Section 8.6], where the estimates are computed
simultaneously with the primal and dual variable updates,
albeit with larger stepsizes. Intuitively this device allows us
to replace the estimators by their steady-state values in the
convergence analysis of the sampling-based algorithm.

First, consider the following recursive estimators for the
link capacities

ĉlm[k + 1] = ĉlm[k] + γk(clm[k; x[k]]− ĉlm[k]), (19)

where ĉlm[0] = 0, and γk ∈ (0, 1) are prespecified stepsizes
that can be taken as constant and sufficiently small, see
[15]. Next, the capacity gradients are estimated using a form
of finite difference approximation. Standard finite-difference
methods are not practical in multi-robot systems however,
requiring too much inter-robot coordination. The issue is that
to estimate the partial derivatives of the link capacities with
respect to the position of a single robot, this robot must
move while the other robots remain fixed. This results in
unreasonably long update times to compute just one iteration
of (16).

This issue can be resolved using a stochastic sampling
strategy known as Simultaneous Perturbation Stochastic Ap-
proximation (SPSA), see [13]. We divide period k into two
subperiods. In the first subperiod, the robots are in the con-
figuration x[k], and each robot measures the link capacities
clm[k; x[k]] that its presence influences. It also generates for
that period, independently of the other robots, a random d-
dimensional vector, say ∆i[k] for robot i, with independent



and identically distributed (iid) entries in {+1,−1} such that
P (∆l

i = 1) = P (∆l
i = −1) = 1/2, l = 1, . . . , d. Let

∆[k] = [∆1[k]T , . . . ,∆n[k]T ]T denote the aggregate nd
dimensional random vector. In the second subperiod, denoted
k+, all robots move simultaneously and randomly, with robot
i moving by an amount δ∆i[k] from xi[k], where δ is a small
constant. Then, each robot again measures the relevant link
capacities clm[k+; x[k] + δ∆[k]]. They can now update the
following sequences

d̂lm,i[k + 1] =d̂lm,i[k] + γk
(
∆i[k](clm[k+; x[k] + δ∆[k]]

− clm[k; x[k]])− d̂lm,i[k]
)
, (20)

where the γk are the same as in (19), and d̂lm,i[0] = 0.
The final sampling-based algorithm followed by the robots

is the same as the primal-dual algorithm (16)-(18), (13)-(14),
except that in (16), (14) and (18) the capacities cij(x[k]) in
the expression hij(x[k], rij [k]) are replaced by the estimates
ĉij [k] from (19) and in (16) the terms ∂clm(x[k])/∂xi are
replaced by the estimates d̂lm,i[k]/δ based on (20). Perhaps
surprisingly, numerical experiments [24] have shown that
for many problems the total number of iterations to reach
convergence with this 2-sample randomized approximation
scheme is often of the same order as the one required with the
standard central difference scheme. Hence SPSA drastically
simplifies and accelerates the gradient estimation procedure
by allowing all robots to sample the channels simultaneously,
and potentially involves no significant loss of performance
per iteration overall.

To understand the motivation behind (20), for appropriate
small stepsizes γk and αk, the estimates d̂lm,i[k]/δ used in
(16) in place of ∂clm(x[k])/∂xi approximately contribute
the following term to the dynamics of x[k]

E
[
∆i[k]

clm(x[k] + δ∆[k])− clm(x[k])

δ

∣∣∣x[k]

]
, (21)

which by a Taylor expansion of clm(x) is equal to

E
[
∆i[k]∆[k]T∇clm(x[k])+

1

2
δ∆i[k]∆[k]T∇2clm(x[k] + sδ∆[k])∆[k]

]
, s ∈ [0, 1]

= ∂clm(x[k])/∂xi +O(sup
z
δ‖∇2clm(z)‖), (22)

since E
[
∆i[k]∆[k]T

]
= [0 . . . Id . . . 0].

V. SIMULATIONS

We briefly illustrate the practical behavior of the primal-
dual algorithm for the deployment scenario depicted on
Fig. 1. One robot must approach a given waypoint at a
known position q∗, which is achived with the task potential
(2), while transmitting back some information relayed to
the base station by the other robots. The robots must also
establish a communication flow between this base station and
another distant one. The instantaneous channel capacities are
stochastic and simulated as

cij [k; x] = 4 ηij [k] ln

(
1 +

1

0.1 + 0.25‖xi − xj‖2
)
, (23)
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Fig. 1. One designated robot must approach the target denoted by a cross,
placed at x = 1.5 km (the dotted curve shows the robot trajectory). It
generates information for the top Base Station (BS) at unit rate. The bottom
BS also transmits information to the top BS at unit rate, as part of the
same and unique flow. The other robots spread to establish the necessary
links. The primal and dual variables are updated every 50 ms, using the
measurement-based algorithm and no knowledge of the link capacity model.
The maximum velocity of the vehicles is 10 m/s (36 km/hr), as could be
appropriate for ground robots.

with {ηij [k]}k an iid sequence of log-normal random vari-
ables with distribution lnN (0, 0.2), see Fig. 2. The robots
do not know the model (23) and can only rely on the
fluctuating measurements cij [k; x] taken during deployment
to update their positions and the communication rates. They
implement the two-time-scale SPSA algorithm described in
Section IV-A. As can be seen from Fig. 3(a), with properly
chosen parameters, the instantaneous routing and capacity
constraints can be essentially satisfied during the whole
deployment, resulting in short communication delays and
small queues at the terminals. With a variance here of about
0.27 for the ηij variables, the algorithm exhibits a satisfying
converging behavior. More generally the performance of
such a finite difference scheme can be sensitive to the level
of measured noise, and additional averaging over several
capacity measurements before moving might be necessary.
Variance reduction in the estimates (19), (20) can also be
achieved by reducing the values of α, β, γ.

VI. CONCLUSIONS

A communication constrained robot deployment algorithm
is presented in this paper to jointly optimize the steady-state
locations of a group of unmanned vehicles and the wireless
communication network necessary to support their mission.
An optimization-based approach is proposed, where a gen-
eral augmented Lagrangian primal-dual algorithm can drive
the robotic network to a locally optimal final configuration.
Importantly, this approach can be used as a measurement
based feedback strategy, when no sufficiently reliable prior
model of the communication channels is available.
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Fig. 2. Average link capacity function (solid curve) with random samples
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Fig. 3. (a) Trajectories of the routing constraint values
gφi (a

φ
i [k], r

φ
i ·[k], r

φ
· i[k]). Note that the communication constraints

are essentially always satisfied during deployment. (b) Sample trajectory
of the capacity estimates (19) for the link (1, 2), with γ = 0.2.
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[6] M. Lindhé and K. H. Johansson, “Adaptive exploitation of multipath
fading for mobile sensors,” in IEEE International Conference on
Robotics and Automation, Anchorage, AK, May 2010, pp. 1934–1939.

[7] S. Firouzabadi and N. C. Martins, “Jointly optimal power allocation
and constrained node placement in wireless networks of agents,”
University of Maryland, Tech. Rep., 2008.

[8] M. M. Zavlanos, A. Ribeiro, and G. J. Pappas, “Mobility and routing
control in networks of robots,” in Proceedings of the 49th IEEE
Conference on Decision and Control, Atlanta, GA, December 2009,
pp. 7545–7550.

[9] ——, “Distributed control of mobility and routing in networks of
robots,” in Proceedings of the IEEE Workshop on Signal Processing:
Advances in Wireless Communications, Marrakech, Morocco, June
2010.

[10] J. Fink, A. Ribeiro, and V. Kumar, “Algorithms for controlling mobility
while maintaining robust wireless connectivity,” submitted to IEEE
Proceedings, 2011.

[11] E. M. Craparo, J. P. How, and E. Modiano, “Throughput optimization
in mobile backbone networks,” IEEE Transactions on Mobile Com-
puting, vol. 10, no. 4, pp. 560–572, April 2011.

[12] J. Le Ny, A. Ribeiro, and G. J. Pappas, “Robot deployment with
end-to-end communication constraints,” in Proceedings of the IEEE
Conference on Decision and Control, Orlando, FL, December 2011.

[13] J. C. Spall, “Multivariate stochastic approximation using a simulta-
neous perturbation gradient approximation,” IEEE Transactions on
Automatic Control, vol. 37, no. 3, pp. 332–341, March 1992.

[14] H. J. Kushner and G. G. Yin, Stochastic Approximation and Recursive
Algorithms and Applications, 2nd ed. Springer, 2003.

[15] J. Le Ny, A. Ribeiro, and G. J. Pappas, “Adaptive communication-
constrained deployment of unmanned vehicle systems,” University of
Pennsylvania, Tech. Rep., July 2011.

[16] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” International Journal of Robotics Research, vol. 5, no. 1, pp.
90–98, 1986.

[17] E. Rimon and D. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 5, pp. 501–518, October 1992.

[18] J. Reif and H. Wang, “Social potential fields: A distributed behavioral
control for autonomous robots,” Robotics and Autonomous Systems,
vol. 27, pp. 171–194, 1999.

[19] A. Ribeiro and G. Giannakis, “Separation principles in wireless
networking,” IEEE Transactions on Information Theory, vol. 56, no. 9,
pp. 4488–4505, September 2010.

[20] A. Ribeiro, “Stochastic learning algorithms for optimal design of
wireless fading networks,” in Proceedings of the IEEE Workshop
on Signal Processing and Advances in Wireless Communication,
Marrakech, Morocco, June 2010.

[21] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Athena Scientific,
1999.

[22] H. J. Kushner and D. S. Clark, Stochastic Approximation Methods for
Constrained and Unconstrained Systems. Springer-Verlag, 1978.

[23] A. Ribeiro, “Ergodic stochastic optimization algorithms for wireless
communication and networking,” IEEE Transactions on Signal Pro-
cessing, vol. 58, no. 12, pp. 6369–6386, December 2010.

[24] J. C. Spall, Introduction to Stochastic Search and Optimization. Wiley,
2003.


