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Abstract— We study a route choice game model, where a
large number of drivers are circulating on a road network.
Given an origin-destination pair, each driver tries to pick the
shortest least congested route to minimize his/her travel time.
We develop a mean field game based algorithm that generates
the drivers’ optimal choices and anticipates the evolution of
their probability distribution on the network. The optimal
choices, which constitute a Nash equilibrium in the limit of
an infinite number of drivers, guide a generic driver to his/her
destination with the most efficient road. Moreover, they define
a maximum likelihood function that can be used to estimate
the model’s parameters. Our algorithm takes only the drivers’
initial distribution as an input, which is typically provided to
the drivers by navigation applications. Finally, we illustrate
via a numerical scheme how the model can also be used to
evaluate the performance of different network configurations.
An example shows how adding a road link to an existing
network might not improve the expected travel time of the
drivers.

I. INTRODUCTION

Route choice models [1] try to capture how drivers choose
their routes between pairs of origins and destinations on
a road network. They play a crucial role in transportation
network planning. For example, they provide planners with
predictions about the traffic load on the different road links
of a network [2], allowing them to study whether adding a
new link to an existing transportation network can improve
the travel time of the drivers and reduce traffic congestion.
The well-known Braess paradox [3] shows however that
additional links can worsen the travel time of drivers when
they can anticipate the level of congestion on the road
network to play a non-cooperative game with each other, with
each driver selfishly optimizing its own travel time. With the
advance of information technology, it is similarly becoming
clear that the effect of providing real-time information to the
drivers must be better understood, as it can have negative
consequences in a competitive environment [4]. A careful
understanding of the interaction driver-information [5] is
needed in order to decide the timing and nature of infor-
mation to release to the drivers, for an uninformed driver is
sometimes better for the overall performance of the network
than an informed one [6], [7].

Drivers are rational decision makers and can anticipate
the behavior of the other drivers when making an optimal
decision. As a result, a model that seeks to explain how
drivers move on a road network needs to conform with their
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rationality. For example, if the model assumes that the drivers
are minimizing their travel times, then the latter should not
be considered as exogenous variables independent of the
drivers’ future actions, but both a factor shaping their choices
and a result of these choices at the same time. In other
words, a rational driver needs to anticipate the amount of cars
that will choose a certain link before picking it in order to
minimize the additional travel time due to traffic congestion.

The main goal of this paper is to model and understand
how a group of rational drivers on a road network make their
route choices, given a set of origin-destination pairs. More
precisely, we consider a route choice model involving a large
number of drivers. Each driver anticipates the other drivers’
future choices given the current information, to subsequently
choose the shortest least congested route.

The main contributions of this paper are as follows:

1) We introduce a mean-field games approach to the route
choice problem, which is a natural way of modeling
the behavior of a large number of interacting rational
decision makers.

2) Our model generates the transition probabilities of a
generic driver on the network. These probabilities can
be used for both estimating the model’s parameters and
guiding a driver to his/her destination with the most
efficient road.

3) Given an initial distribution of drivers on a network,
our model predicts the evolution of this distribution
over time. This information is typically provided to
drivers by navigation applications. In practice, one can
measure the distribution of drivers on a periodic basis
and use the model to predict its evolution between two
consecutive measurements.

4) Our model can also be used to compare the perfor-
mance of different candidate network configurations
in terms of travel times, while taking into account the
rationality of the individual drivers.

Route choice problems are studied in the literature from
two different perspectives. The first is microscopic. It consid-
ers an individual driver and tries to understand how he/she
makes his/her choice of route based on some personal at-
tributes, such as the type of car he drives, and network related
attributes, such as the travel times on the different road links
and the network layout. These models are studied within the
framework of discrete-choice theory in microeconomics [8].
They are logit-based models and differ in the assumptions
made on correlations in travel times between different links.
For example, Ben-Akiva [9] extended the multinomial-logit
model to what he calls the nested logit model, in order
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to capture situations where the set of network links is
partitioned into nests, such that intra nest link travel times
are correlated, while links in different nests have independent
travel times. Vovsha [10] generalized Ben-Akiva’s model by
proposing the Cross-nested logit model to allow for trans-
nests correlations. Later, Gao et al. [5], [11] generalized
these models to account for real-time information, where a
driver revisits at each roads intersection his/her choice of
the next road link based on some new information about
the traffic conditions, such as the most recent travel times.
These logit-based models consider the travel times on the
different links as exogenous variables that do not depend on
the future actions of the drivers. This corresponds to bounded
rationality of the drivers, who according to these models act
myopically, based on a travel time that does not reflect the
current or future traffic conditions. The second perspective
is macroscopic. It includes static and dynamic traffic assign-
ment models [12]–[14]. These models are concerned with
the macroscopic behavior of the drivers, i.e., the evolution
of traffic flow on the road network.

Our model lies somewhere between the microscopic and
macroscopic approaches. In fact, it starts by describing the
individual choices of the drivers to anticipate the macro-
scopic behavior of the population, i.e., the evolution of the
drivers’ probability distribution on the network. This passage
from the microscopic to the macroscopic levels is a result of
the way the drivers interact with each others, and of the
methodology we use to analyze our model, namely, Mean
Field Games (MFG). Indeed, we consider a discrete time
dynamic game with a finite number of states, which involves
a large number of weakly coupled drivers/players, that is, an
isolated individual strategy has a negligible impact of the
others’ strategies, while the mass behavior of the population
has a considerable influence on the individual strategies. To
analyze our game involving a large population of players,
we follow the MFG methodology, which was introduced in a
series of papers by Huang et al. [15]–[17], and independently
by Lions and Lasry [18]–[20]. Discrete time finite state
MFGs were studied later [21], [22]. To solve the game, the
MFG methodology starts by considering the limiting case
of a continuum of players, which can be described by two
coupled forward-backward difference equations. The back-
ward equation characterizes a generic player’s best response
to the macroscopic distribution of players, while the forward
equation propagates the probability distribution of the players
under these best response strategies. Candidate sustainable
macroscopic behaviors/probability distributions, if they exist,
are then computed by a fixed point argument. The best
response strategies, when applied to the finite population,
typically constitute approximate Nash equilibria.

The mathematical model of the route choice game is
presented in Section II. In Section III, we solve the game
via the MFG methodology, compute the drivers’ optimal
choices and show how to anticipate the drivers’ probability
distribution. Section IV discusses the main results of the
paper. Section V reports some numerical simulation results,
while Section VI presents our conclusion.

II. MATHEMATICAL MODEL

We model our problem as a finite-state dynamic game
in discrete time. We consider a large number of drivers
moving on a directed graph G = (E,N), where the edges
E = {1, . . . , d} represent the road links, and the nodes
N the road intersections. We assume that the drivers are
initially distributed on the road links according to a known
probability distribution {πi

0}i∈E . A driver’s goal is to move
along the road network from its initial position at time t = 0
until reaching the destination edge d ∈ E before the end of
the time horizon t = T . He/She does so while minimizing
his/her travel time. The state xt ∈ E of a driver at time
t ∈ {1, . . . , T} is its current position (edge). The density of
the drivers at the edge i at time t is denoted by πi

t. We assume
that a driver at the edge xt at time t can only move one edge
per time period, i.e., xt+1 ∈ N (xt), where N (i) is the set
of outgoing edges from the sink node of edge i. A driver at
the destination edge d at time t0 stays at d for all t ≥ t0,
that is, N (d) = {d}. We explain these notions through road
network example shown on Figure 1. This network consists
of six road links {1, 2, 3, 4, 5, 6}, where the destination edge
is 6. The sets of outgoing neighbors of edges 1, 2, 3, 5 and 6
are respectively N (1) = {3, 4}, N (2) = {5}, N (3) = {5}
and N (4) = N (5) = N (6) = {6}.

1

2

3

4

5

d = 6

Fig. 1. A road network example.

The game is played as follows. We assume that a driver
reaches his/her destination whenever he/she arrives at the
origin node of d. A driver at time t < T at the edge xt, such
that the destination edge d ∈ N (xt), moves at time t+1 to d,
i.e., d is an absorbing state. In this case, he/she does not pay
a cost. Otherwise, a driver at edge i at time t < T assigns a
probability vector {P ij

t }j∈N (i) to the neighbor edges N (i).
Subsequently, he/she moves with probability P ij

t to the link
j at time t+ 1 and pays a per-step cost

cijt = αijP
ij
t max(πi

t, ε) + hj(π
j
t+1), (1)

where hj : [0, 1] 7→ R+ is a continuous increasing function,
and αij and ε are positive scalars. In other words, the
probabilities {P ij

t }j∈N (i) are the control variables of a driver
at edge i at time t. The term αijP

ij
t max(πi

t, ε) is the “fork
cost”. It models the travel time that a driver spends at the
fork while moving from link i to link j at time t. For ε = 0,
this cost increases with the fraction of drivers that make the
same decision, i.e., P ij

t π
i
t. Here, we assume in fact that the

constant ε is small but strictly positive, for a technical reason
that will become clear later (see Remark 2). The sensitivity
coefficient αij depends on the physical layout of the fork.
In the example of Figure 1, there are two α−coefficients
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related to the fork that links edge 1 to edges 3 and 4, namely,
α13 and α14. If for example the number of lanes on link 1
dedicated to turning toward link 3 (this number is equal to
2 in Figure 2) is greater than that of the lanes dedicated to
turning toward 4 (this number is equal to 1 in Figure 2), then
the connection 1− 3 is capable of absorbing more cars than
1 − 4, and α13 < α14. In other words, if the group of cars
that are on link 1 at time t splits evenly between links 3 and
4 at time t+ 1, then the travel time between 1 and 3 is less
than that between 1 and 4.

Fig. 2. Fork cost coefficients.

The term hj(π
j
t+1) is the “link cost”, which models the

travel time on link j. This term increases with the traffic
congestion, i.e., the density of drivers πj

t+1, and depends on
the layout of link j. For example, we can have hj(π

j
t+1) =

δj/max(βj − πj
t+1, ηj), where δj > 0, βj ∈ [0, 1], and ηj

is a positive scalar much smaller than δj . In this case, δj/βj
models the travel time on link j without traffic congestion
(πj

t+1 = 0), and δj/ηj the travel time on this link when the
density of cars exceeds the capacity of link j, βj . It should
be noted here that δj/ηj is a large positive number. Finally,
a driver at the end of the time horizon T pays a cost equal to
M > 0 if he/she is not at the destination edge d. This final
cost encourages the drivers to reach their destination before
the end of the time horizon T .

In summary, our model aims at capturing the individually
optimal route choice policies for the drivers on a road net-
work. These drivers, considered rational, have to anticipate
the strategies of the other drivers in order to avoid traffic
congestion and arrive at the destination edge in minimum
time. A solution in such situations is a Nash equilibrium,
which is hard to compute for a large population. However,
since we assume a homogeneous population of drivers that
are only weakly coupled through their density via the cost
(1), the methodology of MFGs, which we introduce next,
offers a promising avenue for analyzing the game.

Remark 1: A potential generalization of this model is to
assume a heterogeneous population of drivers with noniden-
tical origin-destination pairs and arrival time preferences
driving on a time-varying graph. For clarity, we do not
consider this case in the paper, although the corresponding
analysis is similar to the one we present here.

III. MEAN FIELD EQUATIONS

Following the mean field games methodology [21], we
start by assuming a continuum of players whose probability
distribution flow π = {πi

t}t,i is deterministic and assumed
known for now. Later in this section, we explain how to

compute this flow by using a fixed point argument capturing
the fact that the drivers must collectively reproduce this
flow when they individually react optimally to it. With
the distribution flow π known to all players, a generic
driver faces an optimal control problem and chooses its
transition probabilities P ij

t to minimize its cost by solving
the following dynamic program [23],

V d
t = V d

t+1, t < T,

V i
t = min

P i
t∈Si

∑
j∈N (i)

(
cijt + V j

t+1

)
P ij
t , i 6= d, t < T, (2)

with V d
T = 0 and V i

T = M , for i 6= d. Here, the set Si is
the set of probability measures P i

t = (P i1
t , . . . , P

id
t ) with

support N (i), and V i
t is the optimal cost-to-go at time t

given the current state xt = i. Note that the cost V i
t depends

on the probability distribution flow π through the per-step
cost cijt defined in (1).

Given the probability distribution flow π, and assuming
the cost-to-go V known, a generic driver’s best response
{P̄ ij

t }t,i,j to π solves the following convex program,

min
P i

t∈Rd

d∑
j=1

(
αijP

ij
t max(πi

t, ε) + hj(π
j
t+1) + V j

t+1

)
P ij
t

s.t. P ij
t ≥ 0,

∑
j∈N (i)

P ij
t = 1, and

∑
j /∈N (i)

P ij
t = 0. (3)

The convex program (3) has a unique “water filling”-type
solution [24], which we give in the following theorem.

Theorem 1: The convex program (3) has a unique solu-
tion:

P̄ ij
t =

max
(
vijt − V

j
t+1, 0

)
2αij max(πi

t, ε)
, for j ∈ N (i),

P̄ ij
t = 0, for j /∈ N (i),

(4)

where
vijt = −λit − hj(π

j
t+1) (5)

and λit is the unique solution of

git(λ
i
t) ,

∑
j∈N (i)

max
(
−λit − hj(π

j
t+1)− V j

t+1, 0
)

2αij max(πi
t, ε)

= 1.

(6)
Proof: The drivers are constrained to move on the graph

G. As a result P̄ ij
t = 0 for j /∈ N (i). Moreover, the unique

solution P̄ i
t of the convex program (4) satisfies the following

KKT conditions [25, Section 5.5.3]:

µj
t + λit = −2αijP̄

ij
t max(πi

t, ε)− hj(π
j
t+1)− V j

t+1 (7)

P̄ ij
t ≥ 0, (8)∑

j∈N (i)

P̄ ij
t = 1 (9)

µj
t ≥ 0, (10)

µj
t P̄

ij
t = 0, (11)
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∀j ∈ N (i), for some λit ∈ R and µj
t ∈ R. By multiplying

both sides of equation (7) by µj
t and noting (11), one can

deduce (4). The equality git(λ
i
t) = 1 follows from (4) and

(9). It remains to prove that there exists a unique solution
to git(λ

i
t) = 1. In fact, git is a continuous piecewise affine

strictly decreasing function from R onto [0,∞), hence (6)
has a unique solution λit.
According to the policies (4), there exists at each step time
t a set of threshold costs {vijt }j∈N (i), such that a driver at
time t at edge i will not move at time t + 1 to a “costly”
edge j with expected cost-to-go greater than the threshold
cost vijt . It should be noted that in Theorem 1 we do not
consider the trivial case where d ∈ N (i). Indeed, in this
case P̄ id

t = 1 and P̄ ij
t = 0, for j 6= d.

Having computed the drivers’ best responses to π, we
turn to the problem of computing a sustainable probability
distribution flow π and the corresponding cost-to-go V . A
sustainable distribution flow is such that it is collectively
replicated by the drivers when they optimally respond to it.
Hence, π and V must satisfy the following coupled forward-
backward difference equations, which constitute the mean
field equations,

Vt = F1(Vt+1, π), VT = (M, . . . ,M, 0), (12)

πt+1 = F2(πt, V ), π0 = (π1
0 , . . . , π

d
0), (13)

where π = {πi
t}t,i, V = {V i

t }t,i, Vt = (V 1
t , . . . , V

d
t )

and πt = (π1
t , . . . , π

d
t ). Equation (12) is the dynamic

program equation (2) where we replace {P ij
t }t,i,j by the

best responses {P̄ ij
t }t,i,j to the flow π. Equation (13) can

be written more explicitly as

πj
t+1 =

d∑
i=1

P̄ ij
t π

i
t, ∀j, (14)

and describes the evolution of the drivers’ distribution under
their best responses {P̄ ij

t }t,i,j . Note here that P̄ ij
t depends

on π and V .
A flow π is sustainable if and only if it is a fixed point

of the map f = f2 ◦ f1, described as follows. The function
f1 is defined from the set of probability distributions flows
ST+1, with S = {(y1, . . . , yd) ∈ Rd|

∑d
i=1 yi = 1, yi ≥

0,∀1 ≤ i ≤ d}, to the set R(T+1)×d, such that f1(π) is
the cost-to-go function V when a generic driver optimally
respond to π, i.e., f1(π) is equal to the unique solution V
of the backward difference equation (12). The function f2
is defined from R(T+1)×d to ST+1, such that f2(V ) is the
unique solution π of (13). The following theorem shows that
there always exists a pair (π, V ) that satisfies the mean field
equations (12)-(13), or equivalently, a fixed point π of f .

Theorem 2: There exists a sustainable probability distri-
bution flow and corresponding cost-to-go, i.e., a pair (π, V )
satisfying (12)-(13).

Proof: The set ST+1 is a nonempty convex compact
subset of R(T+1)d. Hence, it is sufficient to show that f2 ◦f1
is continuous, in which case Brouwer’s fixed point theorem
[26, Section V.9] guarantees the existence of a fixed point
flow π of f2 ◦ f1. In the following, we show that λit, the

unique solution of (6), is continuous with respect to Vt+1 and
π, which implies that the best response (4) is continuous with
respect to Vt+1 and π. This, combined with (2) and (14), im-
plies that f2◦f1 is continuous. The function git defined in (6)
is continuous piecewise linear, with break points (bj , g

i
t(bi)),

for j ∈ N (i), where bj = −hj(πj
t+1)−V j

t+1. Therefore, it is
sufficient to show that the break points change continuously
with Vt+1 and π. Let us consider git defined in (6) as a
function of (λit, Vt+1, π). Then, git(λ

i
t, Vt+1, π) is a contin-

uous function of (λit, Vt+1, π). Moreover, bj is a continuous
function of (Vt+1, π). Hence, the break points (bj , g

i
t(bi)),

which are equal to (bj(Vt+1, π), git(bj(Vt+1, π), Vt+1, π)) are
continuous functions of (Vt+1, π). This proves the result.

Remark 2: If ε = πi
t = 0, then one of the P̄ ij

t is equal
to one and the others are zero, and the function f defined
above Theorem 2 is no longer continuous. Hence, we assume
ε > 0 to guarantee the existence of a fixed point π.

IV. DISCUSSION

A. Computation of a Nash equilibrium

Theorem 2 guarantees the existence of at least one infinite
population Nash equilibrium {P̄ ij

t }t,i,j , which can be com-
puted by only knowing the initial probability distribution of
the drivers π0, as follows. The first step is to find a fixed point
probability distribution flow π of the map f , defined above
Theorem 2. Here, we can apply Broyden’s method [27] to
the function f(π)−π. The key feature of this quasi-Newton
method is that it avoids the computation of the Jacobian
matrix and its inverse, which is advantageous when working
in high dimensional spaces, such as the set of distribution
flows ST+1 ⊂ R(T+1)d in our case. Once a fixed point π is
computed, the second step consists in propagating backwards
the dynamic program equation (12), and then computing the
best responses (4). It should be noted here that the only
information needed to find an equilibrium is π0, which is
used in equation (13) to compute the value of f at any
distribution flow π.

B. Parameters estimation and practical use of the model

We discuss briefly in this section the problem of esti-
mating the model parameters and how our model can be
used in practical situations. These two problems will be
studied in greater detail in future work. We denote by θ
the vector of parameters to be estimated, for example θ =
{αij , βj , δj , ηj}i,j when hj(π

j
t+1) = δj/max(βj−πj

t+1, ηj).
The dataset D consists of the observed paths of n drivers,
i.e., D = {ij0i

j
2 . . . i

j
T , 1 ≤ j ≤ n}, where the j−th

driver’s path ij0i
j
2 . . . i

j
T is the sequence of road links taken

by the driver between t = 0 and t = T . In order to have
uncorrelated data, we assume that the n paths are observed
during n non-overlapping time intervals. Given the dataset
D, the maximum likelihood estimation method [28] consists
in finding the parameters θ that maximize the probability of
occurrence of D. According to our model, the probability
that the j−th driver takes the path ij0 . . . i

j
T is Fj(θ) =

P̄
ij0i

j
1

0 × · · · × P̄ ijT−1i
j
T

T−1 , where Fj depends on θ through the
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best responses (4). As a result, the probability of occurrence
of the observed dataset D is equal to FD(θ) =

∏n
j=1 Fj(θ).

As shown in IV-A, to compute the best responses for a given
θ (and as result FD(θ)), one needs to find a fixed point
distribution flow π. A potential algorithm to find a maximum
of FD would include two loops; (i) an internal loop that
computes the value of FD as discussed in IV-A, and (ii) an
external loop that finds the maximizer of FD, for example,
the gradient descent algorithm [25].

Once the parameters are estimated, the model can be used
to predict how an initial distribution of drivers evolves on
the road network. This reduces the amount of collected data
needed to forecast the traffic conditions on the network.
In fact, instead of continuously measuring the distribution
of the cars on the different links, one can measure their
density on a periodic basis, and use our model to predict its
evolution between two sets of measurements. The periodic
measurements are needed here in order to compensate for the
prediction error due to the fact that the MFG methodology
assumes an infinite number of perfectly rational drivers.
The model can also be useful in transportation planning,
for example, to compare the performance of different road
configurations in terms of travel times, which are somehow
reflected in the cost-to-go given by (12). On the individual
level, the best responses (4) can be used as “navigators” to
guide a driver to his/her destination using the most efficient
road. These navigators are local, i.e., located in the drivers’
cars, and need only to measure the current position of the
car, and be fed periodically with the actual distribution of
the cars on the network. As a result, they are advantageous
from both an implementation efficiency and from a privacy
point of view.

V. SIMULATION RESULTS

In this section, we illustrate through a numerical example
how our model can be used to predict the evolution of
the probability distribution of the drivers on a network, to
compare the performance of two network configurations, and
to guide optimally an individual driver to his/her destination.

We consider a network consisting of 13 road links. The
network layout is shown in Figure 3. We assume that the link
cost is given by hj(π

j
t+1) = δj/max(βj−πj

t+1, ηj), and that
at time t = 0, 30% of the cars are at edge 1, 30% at edge
3 and the rest at edge 2. The drivers need to move from
their initial positions to reach the destination edge d = 13
before T = 7. We assume that δ5/β5 = δ7/β7 = 10, and
δj/βj = 3 for the other edges. This means that, without
traffic congestion, the travel time on links 5 and 7 is 10/3
longer than that on the other links. ηj = 0.01 and the β
coefficients are β10 = 0.9, β11 = β4 = 0.1, and βj = 0.3
for the other edges. This means that the capacity of link 10
is 9 times that of links 4 and 11, and 3 times the capacity of
the other links. The αij coefficients are equal to 2 and the
final cost M at an edge i 6= d is equal to 5.

We consider two scenarios. In the first one, we assume that
link 10 does not exist, while in the second scenario link 10
exists. Following the numerical method discussed in Section

IV-A, we compute the probability distribution flow π and the
optimal cost-to-go functions V for both scenarios. Figures 4
and 5 show respectively the evolution of the cars’ distribution
without and with link 10. As shown in Figure 5, 18% of
the cars use the link 10 at time t = 3. This additional link
reduces the expected cost-to-go of a driver initially at edge
1 from 61 to 60. For drivers initially at edges 2 and 3, this
cost remains approximately the same with and without link
10. This means that the additional link 10 does not improve
the total travel time of the drivers. Finally, Figure 6 shows
the sample path (red dashed line) of a driver on the network
with and without link 10.

1

2

3

4

6

5

7

8

9
10

11

12

13

Fig. 3. Network layout

Fig. 4. Evolution of the cars’ probability distribution without link 10. The
radius of the red balls at edge j is proportional to the density of cars on
that edge.

VI. CONCLUSION

We consider in this paper a route choice game model,
where a large number of rational selfish drivers are choosing
their routes to reach their destination in minimum time. We
develop via the MFG methodology a set of Nash strategies,
and suggest a numerical method to anticipate the evolution
of the drivers’ distribution on the network. One needs only
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Fig. 5. Evolution of the cars’ probability distribution with link 10. The
radius of the red balls at edge j is proportional to the density of cars on
that edge.

Fig. 6. Sample path of a driver on the road network with and without link
10.

to know the initial distribution of the drivers to run this
numerical algorithm. This limits the amount of collected
information needed to forecast the traffic conditions on the
network. Finally, the Nash strategies generated by our model
describe the transition probabilities of the drivers. They are
of great importance when considering the estimation of the
model’s parameters, which will be the subject of our future
work.
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