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Abstract—Cooperation between multiple autonomous vehicles
requires inter-vehicle communication, which in many scenarios
must be established over an ad-hoc wireless network. This paper
proposes an optimization-based approach to the deployment of
such mobile robotic networks. A primal-dual gradient descent
algorithm jointly optimizes the steady-state positions of the robots
based on the specification of a high-level task in the form of
a potential field, and routes packets through the network to
support the communication rates desired for the application.
The motion planning and communication objectives are tightly
coupled since the link capacities depend heavily on the relative
distances between vehicles. The algorithm decomposes naturally
into two components, one for position optimization and one
for communication optimization, coupled via a set of Lagrange
multipliers. Crucially and in contrast to previous work, our
method can rely on on-line evaluation of the channel capacities
during deployment instead of a prespecified model. In this case,
a randomized sampling scheme along the trajectories allows the
robots to implement the algorithm with minimal coordination
overhead.

Index Terms—Mobile wireless network optimization, un-
manned vehicle systems, robot motion planning, primal-dual
optimization algorithms.

I. INTRODUCTION

Unmanned Vehicle Systems (UVS) have become critical
assets for intelligence, surveillance and reconnaissance mis-
sions [1], and could be used in the near future for envi-
ronmental monitoring, search and rescue missions, intelligent
distribution and transportation, or the exploration of dangerous
indoor environments. UVS consist of a number of autonomous
vehicles or mobile robots that can communicate with each
other to enable cooperative behaviors [2], [3], and with base
stations for complex data analysis and higher level control
purposes. Thus reliable and efficient wireless communication
is a key component to the successful operation of current and
future UVS [1]. Except for the largest unmanned vehicles
communicating with distant command centers via satellite
links, the bulk of these systems must rely on line-of-sight
communication [1]. In many situations, notably for military
operations or disaster relief operations, a wireless communi-
cation infrastructure is initially absent and the robots need
to form an ad-hoc network [4]. Hence with the currently
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increasing density of vehicles simultaneously in operations,
spectrum management and network optimization is becoming
a major issue for UVS [1].

The communication quality requirements for UVS favor
small inter-vehicle distances or high altitudes and are therefore
in conflict with the operational requirements, since better
sensing requires low altitude operations and better exploration
requires spreading the network. Much work in mobile robotics
has focused on trajectory planning and deployment under
communication constraints, but generally by assuming very
simplified connectivity constraints and communication mod-
els. In particular, the disc model enables the use of graph
theoretical methods to account for connectivity constraints,
see e.g. [5], [6]. However, such models are inadequate to
optimize global performance metrics for the network, such
as bandwidth specifications between distant terminals, or to
exploit the spatial diversity in the inter-robot channels to
adaptively route the traffic. Interferences are also not taken
into account.

Recently however, more realistic wireless channel models
have been used in robotics [7]–[9]. Firouzabadi and Martins
[10] consider a network optimization problem including node
placement and optimal power allocation, and solve it using
geometric programming. Zavlanos et al. [11], [12] consider
a problem similar to the one presented in this paper, includ-
ing robot motion planning and packet routing. Other related
communication-constrained deployment problems are treated
in e.g. [13], [14], and some experimental studies can be found
in [15]–[17]. However, virtually all proposed approaches rely
on known, and often deterministic models of the channel gains.
In this case, the resulting trajectory planning algorithms can
operate “open-loop”, without ever relying on wireless channel
measurements. Unfortunately wireless channel modeling is
notably difficult, especially for indoor environments [4], and
the lack of robustness of the proposed methods to modeling
errors has been discussed only in a few cases [7], [9]. Fink
et al. [13], [18], [19] discuss a robotic network controller
that includes a separate communication channel estimation
component, but in general little is known on how to naturally
integrate on-line wireless channel measurements in a feedback
motion planner.

Contributions and Outline. As described in Section II,
we consider generic communication-constrained deployment
problems, where the goal is to move a mobile robotic net-
work from an initial configuration to a desired steady-state
configuration appropriate for a given task, without directly
attempting to optimize its transient trajectory. This framework
has a wide range of applications in robotics [20], including
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formation control [21], coverage control [22], dynamic vehicle
routing [23], or target tracking [24], and can also be used
to continuously adapt the configuration in slowly varying
environments. One of its main advantages is that it typically
leads to distributed algorithms, which are more amenable to
implementation in large networks. In Section III, we develop
a primal-dual optimization algorithm that progressively drives
the robots toward a satisfying spatial configuration for the
task, while ensuring that the resulting network can support
the desired communication flows between vehicles and with
the base stations. This method only weakly couples the mo-
tion planning and communication optimization components,
via a set of Lagrange multipliers. Moreover, an attractive
feature of the algorithm is that it can be easily modified to
plan the trajectories using channel measurements rather than
prespecified channel models, as detailed in Section IV. The
measurement-based algorithm relies in particular on a random
sampling direction approach proposed in the stochastic opti-
mization literature [25], [26], which requires little additional
coordination between the robots. Formal convergence results
for the algorithms are stated in Sections III-C and IV-B, and
simulation results for three illustrative scenarios are discussed
in Section V. Finally, we conclude in Section VI.

II. JOINT DEPLOYMENT AND COMMUNICATION
OPTIMIZATION

A. Task Potential

Consider a mobile robotic network consisting of n robots
evolving in a workspace W ⊂ Rd, with positions denoted
x = [xT1 , . . . ,x

T
n ]T ∈ Wn. We use boldface letters for

vector quantities, and denote [n] := {1, . . . , n}. For sim-
plicity, we assume throughout the paper that W is compact
and convex. Some of the robot positions may be fixed, so
that these “robots” can also represent a fixed communication
infrastructure composed of base stations, with which the
mobile elements must maintain communication. We consider
high-level motion planning problems where we neglect the
dynamics of the robots, whose positions evolve in discrete
time as

xi[k + 1] = PW(xi[k] + ui[k]), xi[0] ∈W, ∀i ∈ [n]. (1)

Here PW denotes the projection on W used to keep the iterates
within the workspace, and ui[k] is the control input for robot
i ∈ [n] at period k, satisfying the velocity constraint ‖ui[k]‖ ≤
vi, where ‖ · ‖ denotes the Euclidean norm.

The quality of the deployment of the mobile robotic network
is captured by a potential field G(x) [21], [27], [28], whose
minimum corresponds to a desired steady-state configuration
x∗ for the group. We call this function the task potential. The
deployment problem for this task potential consists then in
designing feedback control laws allowing the system to reach
x∗ starting from an initial configuration x[0]. For example, a
simple quadratic potential

G(x) = ‖x1 − q∗‖2 (2)

can be used to bring robot 1 to a known target location q∗.
Diverging barrier potentials can be used for inter-robot and

obstacle avoidance in non-convex workspaces [27], [28], and
other potential functions can force groups of robots to maintain
certain formations [21]. Another example of a task potential
for a group of robots is the coverage control task potential
introduced by Cortés et al. [22]. To describe it, consider
a scenario where some events of interest can occur in the
workspace with their location distributed according to some
probability measure PZ on W. The coverage control problem
consists in finding a steady-state configuration for the robotic
network that minimizes the objective

G(x) = EZ
[

min
i∈[n]

c(‖Z − xi‖)
]
, (3)

where EZ is the expectation operator corresponding to PZ
and c is an increasing, continuously differentiable function.
This objective measures the steady-state average “service”
performance for the events, assuming that an event is serviced
by the robot closest to its location, say robot i, at a cost
c(‖Z − xi‖). Note that for c(x) = x2, the potential (3)
is nothing but the quadratic vector quantization performance
index [29], with the robot positions playing the role of the
quantizers.

For a deployment problem with task potential G, a popular
type of feedback controller takes a truncated gradient form
[27]

u(x[k]) = satv(−αk∇G(x[k])) (4)

where αk are prespecified stepsizes, v = [v1, . . . , vn], and for
i ∈ [n]

(satv(u))i =

{
ui, if ‖ui‖ ≤ vi
vi

ui
‖ui‖ , otherwise.

The resulting gradient descent algorithm (1) only leads to
the set of critical points of G in general. We follow this
approach nonetheless, as global minimization of interesting
task potentials for most multi-robot deployment problems,
such as (3), is computationally intractable.

B. Wireless Networking

Because the deployed robotic network must also satisfy
certain communication constraints, the gradient controller (4)
needs to be modified. Indeed, path loss and interferences make
the achievable wireless communication rates highly dependent
on inter-robot distances. In this section we review some termi-
nology and basic principles of wireless networking, in order
to express these communication constraints quantitatively.

Each robot is equipped with a wireless terminal, and wishes
to deliver communication packets to other robots and base
stations for different application level flows, where a flow φ
is associated to a given final destination dest(φ). Note that
several flows can have the same destination. The set of flows
is denoted Φ. The amount of information for flow φ ∈ Φ
accepted at robot i 6= dest(φ) at time k is denoted aφi [k],
with aφi [k] ≥ 0. The amount of information for flow φ routed
between robots i and j at time k is denoted rφij [k], with
rφij [k] ≥ 0. Finally, the capacity of the link (i, j) at time k if
the robotic network is in configuration x is denoted cij [k; x].
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This capacity is also nonnegative and in general random,
determined at the physical layer by the fading state and
the chosen communication scheme, through coding and the
allocation of transmission time-slots, frequencies and powers
[4].

Let us illustrate in more details how the robot positions
influence the channel capacities. Assume that a set F of
frequency tones is available to communicate. For every pair
(i, j) ∈ [n], let hfij [k; xi,xj ] denote the channel power gain
at period k on frequency f , from terminal i at position xi
to terminal j at position xj . Following standard practice in
wireless communications, we assume that {hfij [k; xi,xj ]}f,ij
is the realization of a random vector H[k; x] [4]. Channel gain
models generally take the form

hfij [k; xi,xj ]|dB : = 10 log10 h
f
ij [k; xi,xj ]

= lf (xi,xj) + Y fij [k], (5)

where Y fij [k] is a zero-mean random variable modeling fading
and shadowing effects [4]. The function lf (xi,xj) models the
deterministic path loss between positions xi and xj . Let pfij
denote the power used by terminal i to communicate with
terminal j over the frequency tone f . Many communication
schemes result in link capacities that are functions of the signal
to interference plus noise ratios (SINR)

SINRfij [k; x] =
hfij [k; xi,xj ]p

f
ij

σj + 1
S

∑
(l,m)6=(i,j)

hflj [k; xl,xj ]p
f
lm

, (6)

where σj denotes the noise power at receiver j and 1/S
is the interference reduction due to signal processing, e.g.,
S is approximately equal to the processing gain in a
CDMA system [4, chapter 14]. With capacity-achieving
channel codes, we could have for example cij [k; x] =∑
f∈F log

(
1 + SINRfij [k; x]

)
.

Remark 1: Frequency and power allocation optimization
can also be included in our framework, following [30]. These
variables are not included below for clarity of exposition, our
focus being on the role of controlled mobility on communica-
tion performance.

Coming back to the communication constraints, to ensure
boundedness of the queues at all terminals, it is sufficient
to ensure that the long-term average amount of information
accepted at each terminal is less than the long-term average
amount of information forwarded to other terminals [31], i.e.,

lim
T→∞

1

T

T−1∑
k=0

aφi [k] +
∑
j 6=i

rφji[k]

 ≤ lim
T→∞

1

T

T−1∑
k=0

∑
j 6=i

rφij [k]

∀φ, ∀i 6= dest(φ), (7)

assuming for now that the limits exist. We denote the long-
term averages in the following by

aφi := lim
T→∞

1

T

T−1∑
k=0

aφi [k], rφij := lim
T→∞

1

T

T−1∑
k=0

rφij [k], i 6= j.

Moreover, the long-term average amount of information
circulating on link (i, j) cannot exceed the long-term average

capacity. We assume that for each fixed configuration x, the
capacity values cij [k; x] form a temporal sequence of iden-
tically and independently distributed (iid) random variables,
with mean cij(x). By the strong law of large number, we
have

cij(x) = E[cij [0; x]] = lim
T→∞

1

T

T−1∑
k=0

cij [k; x], a.s. (8)

In fact, the algorithm below works with general ergodic
Markov chains instead of iid sequences, with more technical
assumptions for convergence in Theorem 5. For a robotic
network in a fixed configuration x, we then have the constraint

lim
T→∞

1

T

T−1∑
k=0

∑
φ∈Φ

rφij [k] ≤ lim
T→∞

1

T

T−1∑
k=0

cij [k; x],∀i 6= j. (9)

With the introduced notation, we can rewrite the inequality
constraints (7) and (9) simply as aφi ≤

∑
j 6=i r

φ
ij − rφji and∑

φ∈Φ r
φ
ij ≤ cij(x). We also adopt the convention rφdest(φ)j = 0

for all j, a natural requirement. Finally, we can have rate
constraints of the form aφi,min ≤ aφi ≤ aφi,max for i 6= dest(φ)

and rφij,min ≤ rφij ≤ rφij,max for i 6= j, with aφi,min, r
φ
ij,min = 0

and aφi,max, r
φ
ij,max = +∞ possible values. Any set of average

rates a := {aφi }i,φ, r := {rφij}i6=j,φ and final configuration
x ∈ Wn such that the constraints above are satisfied is said
to be feasible. We would like to select, among these feasible
points, one that is (at least locally) optimal according to a given
criterion, including the task potential for the configuration
component.

C. Joint Optimization Problem

We introduce concave utilities Uφi (aφi ) to value the average
admission rates aφi , and convex costs V φij (r

φ
ij) for establishing

communication links. The optimal configuration and wireless
network parameters are then defined as the solution of the
following optimization problem

min
x,a,r

G(x)−
∑
φ∈Φ

∑
i6=dest(φ)

Uφi (aφi ) +
∑
φ∈Φ

∑
i 6=j

V φij (r
φ
ij) (10)

s.t. aφi ≤
∑
j 6=i

rφij − rφji, ∀φ, ∀i 6= dest(φ) (11)∑
φ∈Φ

rφij ≤ cij(x), ∀i 6= j, (12)

aφi,min ≤ aφi ≤ aφi,max, ∀φ,∀i 6= dest(φ), (13)

rφij,min ≤ rφij ≤ rφij,max, ∀i 6= j. (14)

For a fixed configuration x, the problem (10)-(14) is convex
in the communication rates a, r. However, the presence of the
configuration vector x makes the problem non-convex in gen-
eral, because most useful multi-robot task potentials G are not
convex and the mean capacities cij(x) in (12) are not concave
functions of x. Still, following standard practice in robotics
[21]–[23], [27], one can at least look for a locally optimal
solution to the constrained problem (10)-(14). Moreover, by
using a gradient-based algorithm similar in spirit to (4), we
can obtain a feedback controller driving the robotic network
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progressively toward this locally optimal configuration. The
next section introduces a primal-dual optimization algorithm
for this purpose.

III. PRIMAL-DUAL ALGORITHM

We assume in this section that the average channel capac-
ities cij(x) in (12) are known functions. Problem (10)-(14)
is then a deterministic optimization problem, for which many
nonlinear programming techniques are available [32]. Here we
concentrate on a primal-dual augmented Lagrangian algorithm
[32]. Section III-B motivates this choice.

Define the dual variables λφi ≥ 0, i 6= dest φ, and µij ≥
0, i 6= j, associated with (11) and (12) respectively. We gather
the primal and dual variables in the vectors y = (x,a, r) and
ξ = (λ,µ) respectively. The region defined by W and the box
constraints (13), (14) for the primal variables is denoted Y.
Next, let F (y) denote the objective function (10), and denote
the functions appearing in the constraints (11), (12) as

gφi (aφi , r
φ
i ·, r

φ
· i) = aφi −

∑
j 6=i

(
rφij − rφji

)
, ∀φ, ∀i 6= dest(φ)

hij(x, rij) =
∑
φ∈Φ

rφij − cij(x), ∀i 6= j,

with rij = {rφij}φ∈Φ, rφ· i = {rφji}j∈[n], and rφi · = {rφij}j∈[n].
We can always rewrite an inequality constraint K(y) ≤ 0
as an equality constraint K(y) + z2 = 0, with z a slack
variable. Doing this for (11), (12) leads to the definition of
the augmented Lagrangian [32, Section 4.2] for the equivalent
equality-constrained problem

L̂ρ(y, z, ξ) = F (y) +
∑
φ∈Φ

i 6=dest(φ)

{
λφi

(
gφi (aφi , r

φ
i ·, r

φ
· i) + (zφi )2

)

+
ρ

2
|gφi (aφi , r

φ
i ·, r

φ
· i) + (zφi )2|2

}
+

n∑
i=1

∑
j 6=i

{
µij
(
hij(x, rij) + z2

ij

)
+
ρ

2
|hij(x, rij) + z2

ij |2
}
,

where ρ > 0 is a penalization parameter, and the variables
zφi and zij are slack variables. Partial minimization with
respect to the slack variables, as detailed in [32, p. 406],
allows us to work with the following simpler version of the
augmented Lagrangian function, which depends only on the
original primal and dual variables

Lρ(y, ξ) = F (y)+ (15)
1

2ρ

∑
φ∈Φ

∑
i6=dest(φ)

{
(max{0, λφi + ρgφi (aφi , r

φ
i ·, r

φ
· i)})2 − (λφi )2

}
+

1

2ρ

n∑
i=1

∑
j 6=i

{
(max{0, µij + ρhij(x, rij)})2 − µ2

ij

}
.

Many optimization algorithms aim at computing a Karush-
Kuhn-Tucker (KKT) point (y∗, ξ∗) where the necessary opti-
mality conditions for (10)-(14) are satisfied [32]. Consider a

first-order primal-dual algorithm of the form

y[k + 1] = PY (y[k]− αk∇yLρ(y[k], ξ[k])) (16)

λφi [k + 1] =
[
λφi [k] + βkg

φ
i (aφi [k], rφi ·[k], rφ· i[k])

]λφi,max

0
(17)

µij [k + 1] = [µij [k] + βkhij(x[k], rij [k])]
µij,max
0 , (18)

where αk, βk are prespecified stepsizes chosen as discussed
in Section III-C, PY denotes the projection on the set Y, and
∇y denotes the vector of derivatives with respect to the primal
variables. We use the notation [x]ul := max{l,min{u, x}} to
project x ∈ R on the interval [l, u]. The upper bounds λφi,max

and µij,max need to be sufficiently large so that the resulting
box region

Ξ := {(λ,µ)|0 ≤ λφi < λφi,max,∀i 6= dest φ,

0 ≤ µij < µij,max,∀i 6= j} (19)

contains the desired Lagrange multiplier ξ∗. They can be set
to +∞ if no such region estimate is known, but otherwise
can be used to significantly reduce oscillations in the primal
variable trajectories, see [33, p. 181]. Upper bounds on La-
grange multipliers can be obtained for example from duality
arguments [34, p. 6377].

A. Explicit Form and Considerations about Distributed Imple-
mentations

This section describes the nice structure given to the generic
primal variable update equation (16) by the separable form
of the augmented Lagrangian (15). First, for a differentiable
function K and parameters λ, ρ, we have ∇y[(max{0, λ +
ρK(y)})2] = 2ρmax{0, λ + ρK(y)}∇yK(y). We can thus
rewrite (16) explicitly as

∀i ∈ [n], xi[k + 1] = PW

(
xi[k] + satv

[
− αk

(
∂G

∂xi
(x[k])−∑

l,m6=l

max{0, µlm[k] + ρhlm(x[k], rlm[k])}∂clm
∂xi

(x[k])

)])
,

(20)

aφi [k + 1] =

[
aφi [k]− αk

(
− dUφi

daφi
(aφi [k]) + max{0, λφi [k]

+ ρgφi (aφi [k], rφi ·[k], rφ· i[k])}
)]aφi,max

aφi,min

,∀φ, i 6= dest(φ), (21)

rφij [k + 1] =

[
rφij [k]− αk

(
dV φij

drφij
(rφij [k])

+ max{0, µij [k] + ρhij(x[k], rij [k])}
−max{0, λφi [k] + ρgφi (aφi [k], rφi ·[k], rφ· i[k])}

+ max{0, λφj [k] + ρgφj (aφj [k], rφj ·[k], rφ· j [k])}
)]rφij,max

rφij,min

,

∀φ, ∀i 6= dest(φ),∀j 6= i. (22)

In large robotic networks, distributed algorithms are prefer-
able for their scalability and tolerance to faults [20], [35].
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Assume that robot i ∈ [n] is responsible for updating its
position vector xi[k], its traffic admission rates ai[k] :=
{aφi [k]}φ and outgoing link rates ri ·[k], and the dual variables
λi[k] := {λφi [k]}φ and µi ·[k] := {µij [k]}j . Using its own
local information, it can immediately update the dual variables
µi · according to (18). By also keeping track of the incoming
traffic rates r·i[k] from its one-hop neighbors, it can also
immediately update the variables ai, λi according to (21) and
(17). Finally, to update its link rates rij according to (22) for
some neighbor j ∈ [n], it also needs access to the rates rj ·[k]
and r· j [k] of information sent to and from node j. In other
words, all the mentioned variables so far can be updated with
at most two-hop information.

The complexity of the robot position update (20) depends on
the separability properties of the gradient of the task potential
G and on the number of links (l,m) with which robot i might
interfere, i.e., for which ∂clm/∂xi is not zero. For example,
if interferences can be neglected, e.g., with a large processing
gain S in (6) or an appropriate time and frequency allocation
scheme, then the capacity of link (l,m) depends only on the
positions of robots l and m, so ∂clm/∂xi is non-zero only for
l = i or m = i and the sum in (20) can be computed from
the information collected from the one-hop neighbors. Note
that multi-robot task potentials are typically designed to allow
distributed gradient computations, see e.g. [3], [21], [22].

B. Choice of Algorithms, Layering and Problem Decomposi-
tion

Arguably other optimization algorithms presented in [32]
for example could be used to solve (10)-(14) and obtain a
trajectory for the robot group, but our choice can be briefly
motivated as follows. Barrier methods are popular in robotics
[27], [28] and used in [11], [12], but are generally problematic
once we introduce uncertainty in the model, in particular the
sampling based evaluation of the link capacities in Section
IV. Projected gradient algorithms do not work for general
capacity functions due to the non-convexity of the constraints
(12). Pure penalty methods that do not update the Lagrange
multipliers and only increase ρ tend to have poor convergence
properties [32]. Multiplier methods are similar to our algorithm
but perform a sequence of full primal optimizations and
only update the dual variables (and ρ) after a convergence
test in the primal problem. Unfortunately, in our case the
updates of the configuration variables are the most energy- and
time-consuming, since they involve motion, hence should be
minimized as much as possible. Moreover, as long as the dual
variables are not in the proper region, the primal optimizations
can move the robotic network in bad configurations, where the
instantaneous communication constraints are far from satisfied
and queues build up rapidly. The same issue motivated us not
to follow certain two-time scale approaches that update the
dual variables at a slower rate, i.e., with βk = o(αk), see e.g.
[36], [37].

It is worth noting that the motion planning algorithm (20)
is only coupled to the network layer of the communication
system, via the Lagrange multipliers µ and the link rates r,
and not directly to the transport layer adjusting the admission

variables a [30], [38]. The coupling with the network layer is
intuitively clear since the choice of configuration essentially
controls the capacities of the links. Using an augmented
Lagrangian algorithm with ρ > 0, instead of dual optimization
algorithms more standard in wireless network optimization
[30], creates additional couplings between the communica-
tion variable updates, but the penalization term is generally
required to obtain global convergence results for non-convex
problems. Moreover, by increasing it we can approximately
enforce the communication constraints during the transient
regime of deployment, see Section V. This in turn leads to
smaller delays and shorter queues at the terminals.

C. Convergence
The convergence properties of the primal-dual algorithm can

be discussed for the generic form (16)-(18). To simplify the
notation, the constraints (11), (12) are denoted K(y) ≤ 0 in
this section, with K(y) := [K1(y), . . . ,KN (y)]T , and corre-
sponding reindexed Lagrange multipliers ξ = [ξ1, . . . , ξN ]T .
Let L(y, ξ) := L0(y, ξ) denote the (non-penalized) La-
grangian function. Finally, recall the definition (19) of the set
Ξ of dual variables. Standard convergence results for primal-
dual algorithms for non-convex problems are local, and the
algorithms must generally be appropriately modified to obtain
global convergence guarantees, as briefly described at the end
of this section. First, the following properties of a KKT point
are generally required in convergence proofs [32]. To simplify
the presentation, we only consider local minima that are in the
interior of Y, denoted Y◦.

Definition 2: A primal point y∗ ∈ Y◦ is called regular
if the vectors ∇Kl(y

∗), l ∈ [N ], are linearly independent.
Next, define the set of active constraints at some point y to be
A(y) = {l ∈ [N ]|Kl(y) = 0}. A primal-dual point (y∗, ξ∗)
with y∗ ∈ Y◦ and ξ∗ ∈ Ξ is said to satisfy the second-order
sufficiency conditions if

∇yL(y∗, ξ∗)T = 0; K(y∗) ≤ 0;

K(y∗)T ξ∗ = 0; ξ∗l > 0, ∀l ∈ A(y∗); and

zT∇2
yyL(y∗, ξ∗)z > 0, for all z 6= 0 in

{w|∇Kl(y
∗)Tw = 0, ∀l ∈ A(y∗)}.

In the definition above, ∇2
yyL denotes the matrix of second

order derivatives (Hessian) with respect to the primal variables.
We then have the following convergence theorem, where
all functions in (10)-(14) are assumed twice continuously
differentiable.

Theorem 3: Let y∗ be a regular point in Y◦, local minimum
of (10)-(14), and ξ∗ a Lagrange multiplier so that the pair
(y∗, ξ∗) satisfies the second-order sufficiency conditions. Then
there exists ρ̄ such that for all ρ ≥ ρ̄, there exists ᾱ, β̄
and an open set S containing (y∗, ξ∗) such that for all
α ∈ [0, ᾱ], β ∈ [0, β̄] and (y[0], ξ[0]) ∈ S, the sequence
{(y[k], ξ[k])}k following (16)-(18) with βk = β and αk = α
for all k remains in S and converges to (y∗, ξ∗).

Proof: First, with the pair satisfying the second-order
sufficiency conditions, there exists ρ̄ such that for all ρ ≥ ρ̄,
the matrix ∇2

yyLρ(y∗, ξ∗) is positive definite [32, p. 304]. The
result then follows from [32, Propositions 4.4.2.]
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To get theoretical global convergence results for the algo-
rithm, we must combine the primal-dual algorithm with other
methods mentioned in the previous paragraph, as explained
in e.g. [32, Section 4.4.3.]. Multiplier methods in particular
are globally convergent methods, which can be used if the
primal-dual algorithm fails to converge. In this case, by taking
ρ sufficiently large, the communication constraints can be ap-
proximately enforced during the primal optimization epochs. A
combined multiplier/primal-dual method can be implemented
by varying the stepsizes αk, βk and penalty parameter ρ during
deployment. We refer the reader to [32, Section 4.4.3.] for
a complete discussion of global convergence issues, and to
our simulations in Section V illustrating the good practical
behavior of the primal-dual algorithm.

IV. SAMPLING-BASED ALGORITHM

The algorithm presented in Section III requires a model
of the average channel capacities cij(x), but in practice
such models are notably difficult to devise and only provide
rough approximations [4, chapter 1]. Practical systems must
rely on measuring the channel gains (5) and estimating the
resulting link capacities. Since UVS can be deployed in
a priori unknown environments for which channel strength
maps are not available, deployment algorithms should take
the channel sampling requirement into account. In this section,
we show that this is possible by only modestly increasing the
complexity of the primal-dual algorithm.

A. Two-time-scale SPSA Algorithm
We assume for simplicity that we can measure the instan-

taneous and random channel capacities cij [k; x[k]] introduced
in Section II-B. In practice, only the SINR (6) or channel
gains (5) might be measurable, and the capacities should then
be evaluated based on the chosen communication scheme.
Recall from Section II-B that cij(x) is the ergodic limit (8) of
the random variables cij [k; x], for x fixed. To implement the
iterations (18), (20) and (22) of the algorithm, estimates of the
link capacities cij(x[k]) and of their gradients ∂clm(x[k])/∂xi
are required, and can only be obtained from the measurements
cij [k; x[k]]. We adopt a two-time scale approach [26, Section
8.6], where the estimates are computed simultaneously with
the primal and dual variable updates, albeit with larger step-
sizes. Intuitively this device allows us to replace the estimators
by their steady-state values in the convergence analysis of
the sampling-based algorithm, which then reduces to that of
Section III-B.

First consider the following recursive estimators for the link
capacities

ĉlm[0] = 0, ĉlm[k + 1] = ĉlm[k] + γk(clm[k;x[k]]− ĉlm[k]),
(23)

where γk ∈ (0, 1) are prespecified stepsizes chosen as
discussed in Section IV-B. Next, the capacity gradients are
estimated using a form of finite difference approximation.
Standard finite-difference methods are not practical in multi-
robot systems however, as they are too complex to imple-
ment, requiring too much inter-robot coordination. For ex-
ample, consider for some robot i1 communicating with some

robot i2 the problem of computing the d-dimensional vector
∂ci1i2(x[k])/∂xi1 , which is one of the gradient estimates
required to update its position according to (20). Assume
for simplicity that the capacities are deterministic and can be
perfectly measured, so that ci1i2(x[k]) = ci1i2 [k; x[k]]. With
a central-difference scheme, we have for δ > 0 small

∀l ∈ {1, . . . , d}, ∂ci1i2(x[k])

∂xli1
≈

ci1i2(xi1 [k] + δel,x−i1 [k])− ci1i2(xi1 [k],x−i1 [k])

δ
, (24)

where el is the lth unit vector, and x−i1 is the (n − 1)d
dimensional vector of coordinates of the robots j 6= i1.
Constructing approximation (24) requires that robot i1 move d
times around xi1 [k], to the positions xi1 [k]+δel, l = 1, . . . , d,
while the other robots remain immobile. All robots must
execute these small individual motions, one after the other,
resulting in unreasonably long update times to compute just
one iteration of (20).

This issue can be resolved using a stochastic sampling
strategy known as Simultaneous Perturbation Stochastic Ap-
proximation (SPSA), see [25], [39], [40] and the references
therein. We divide period k into two subperiods. In the first
subperiod, the robots are in the configuration x[k], and each
robot measures the link capacities clm[k; x[k]] that its presence
influences. It also generates for that period, independently of
the other robots, a random d-dimensional vector, say ∆i[k]
for robot i, with independent and identically distributed (iid)
entries in {+1,−1} such that P (∆l

i = 1) = P (∆l
i = −1) =

1/2, l = 1, . . . , d. Let ∆[k] = [∆1[k]T , . . . ,∆n[k]T ]T denote
the aggregate nd dimensional random vector. In the second
subperiod, denoted k+, all robots move simultaneously and
randomly, with robot i moving by an amount δ∆i[k] from
xi[k], where δ is a small constant. Then, each robot again
measures the relevant link capacities clm[k+; x[k] + δ∆[k]].
They can now update the following sequences

d̂lm,i[k + 1] =d̂lm,i[k] + γk
(
∆i[k](clm[k+; x[k] + δ∆[k]]

− clm[k; x[k]])− d̂lm,i[k]
)
, (25)

where the stepsizes γk are the same as in (23), and d̂lm,i[0] =
0.

The final sampling-based algorithm followed by the robots
is the same as the primal-dual algorithm (20)-(22), (17)-(18),
except that in (20), (18) and (22) the capacities cij(x[k]) in
the expression hij(x[k], rij [k]) are replaced by the estimates
ĉij [k] from (23) and in (20) the terms ∂clm(x[k])/∂xi are
replaced by the estimates d̂lm,i[k]/δ based on (25). Hence
SPSA drastically accelerates the gradient estimation procedure
by allowing all robots to sample the channels simultaneously.
Moreover extensive numerical experiments [41] have shown
that for many problems the total number of iterations to reach
convergence with this 2-sample randomized approximation
scheme is often of the same order as the one required with
the standard central difference scheme.

To understand the motivation behind (25), according to The-
orem 5 below, for appropriate small stepsizes γk and αk, the
estimates d̂lm,i[k]/δ used in (20) in place of ∂clm(x[k])/∂xi,
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approximately contribute the following term to the dynamics
of x[k] (see (28) below)

E
[
∆i[k]

clm(x[k] + δ∆[k])− clm(x[k])

δ

∣∣∣x[k]

]
, (26)

which by a Taylor expansion of clm(x) is equal to

E
[
∆i[k]∆[k]T∇clm(x[k])+

1

2
δ∆i[k]∆[k]T∇2clm(x[k] + sδ∆[k])∆[k]

]
, s ∈ [0, 1]

= ∂clm(x[k])/∂xi +O(sup
z
δ‖∇2clm(z)‖), (27)

since E
[
∆i[k]∆[k]T

]
= [0 . . . Id . . . 0].

Remark 4: Various choices for the random directions ∆i[k]
are valid, see [25], [26, Section 10.7], and [42] for experimen-
tal considerations on the selection of random directions for
robotic applications. Moreover with δ smaller than the vehicle
size (see next paragraph), no explicit motion at subperiod k+

is necessary, and we can rely instead on several antennas
mounted at the right positions on the vehicle. For the scheme
above, 5 antennas at coordinates (0, 0), (±δ,±δ) in the local
vehicle frame could be used. At subperiod k, the antenna at
(0, 0) measures the channels, and at subperiod k+, one of the
other antennas is chosen randomly to obtain additional channel
measurements necessary for the gradient estimation procedure.

B. Convergence of the Sampling-Based Algorithm

We now discuss a convergence result for the primal-dual
algorithm (20)-(22), (17)-(18) using the estimates (23), (25).
Related multiple time-scale algorithms for simulation-based
optimization with decreasing stepsizes are discussed in e.g.
[37], [43], but here we focus our analysis on the more practical
case of constant stepsizes, see also [44]. Hence for small
constants ε, γ, δ ∈ (0, 1), assume that for all k we have αk =
βk = ε, γk = γ, in (20)-(22), (17)-(18), (23), (25). Define
the piecewise-constant process θε,γ(·) := (yε,γ(·), ξε,γ(·))
tracking the primal-dual iterates

yε,γ(t) = y[k], ξε,γ(t) = ξ[k], ∀t ∈ [kε, (k + 1)ε), ∀k.
The following convergence result applies as the stepsizes ε, γ
tend to zero with ε << γ. For a < b in R, we use the notation
ẋ = [f(x)]ba to mean the ordinary differential equation (ode)

ẋ =


f(x), if a < x < b, or x = a and f(x) ≥ 0,

or x = b and f(x) ≤ 0

0, if x = a and f(x) < 0, or x = b and f(x) > 0.

The reflection terms zi(·) in (28) below serve the same purpose
of keeping the trajectories of an ode in the set W in higher
dimensions, see [26] for a detailed definition.

Theorem 5: Fix δ ∈ (0, 1). Assume that the sequences
{ĉlm[k]}k, {d̂lm,i[k]}k, {λφi [k]}k, {µlm[k]}k are bounded
almost surely, for all l,m, i ∈ [n], φ ∈ Φ. Moreover, assume
that the measured capacities {cij [k; x]|k ≥ 0,x ∈ W} are
uniformly integrable, i.e.,

lim
M→∞

sup
k,x

E(|cij [k; x]|1{|cij [k;x]|>M}) = 0.

Then for any T > 0, η > 0, and any sequence {θε,γ(·)}ε,γ
with γ → 0, ε/γ → 0, there is a deterministic process t →
θ̄δ(t) := (x(t),a(t), r(t),λ(t),µ(t)) such that we have

lim
γ→0, ε/γ→0

P
(

sup
0≤t≤T

‖θε,γ(t)− θ̄δ(t)‖ > η

)
= 0,

where t→ θ̄δ(t) satisfies the differential equations

ẋi = − ∂G
∂xi

+
∑
l,m6=l

max{0, µlm + ρhlm(x, rlm)}×(
∂clm
∂xi

(x) + blm,i

)
+ zi, (28)

ȧφi =

[
dUφi (aφi )

daφi
−max{0, λφi + ρgφi (aφi , r

φ
i ·, r

φ
· i)}

]aφi,max

aφi,min

,

ṙφij =
[
−
dV φij (r

φ
ij)

drφij
−max{0, µij + ρhij(x, rij)}

+ max{0, λφi + ρgφi (aφi , r
φ
i ·, r

φ
· i)}

−max{0, λφj + ρgφj (aφj , r
φ
j ·, r

φ
· j)}

)]rφij,max

rφij,min

,

λ̇φi =
[
gφi (aφi , r

φ
i ·, r

φ
· i)
]λφi,max

0
,

µ̇ij = [hij(x, rij)]
µij,max
0 .

Here zi(·) are reflection terms keeping xi(·) in W (equal to
zero if xi is in the interior of W), and blm,i(·) are bias terms
due to the finite difference approximations (26), satisfying
supt ‖blm,i(t)‖ = O(δ supx∈W ‖∇2clm(x)‖).

Proof (sketch): For any given configuration vectors x ∈
Wn, and ∆ an nd-dimensional random vector generated as in
the SPSA algorithm, the differential equations

ζ̇lm(t) = clm(x)− ζlm(t),

η̇lm,i(t) = E[∆i(clm(x + δ∆)− clm(x))]− ηlm,i(t),

corresponding to the iterations (23), (25) respectively, each
have a unique globally asymptotically stable equilibrium,
namely ζlm(t) ≡ clm(x) and ηlm,i(t) ≡ E[∆i(clm(x+δ∆)−
clm(x))] respectively. The theorem is then a consequence of
[26, Theorem 6.2]. Intuitively, we can treat the estimates as
having converged in the limit ode due to the choice of relative
stepsizes. The approximation order of the bias terms in the
gradient estimates is obtained from the computation (27). The
other technical assumptions required in [26, Theorem 6.2] are
consequences of our boundedness and uniform integrability
assumptions.

Except for the bias term in (28), the ode in Theorem 5 is
the continuous-time equivalent of the primal-dual algorithm,
whose local convergence to a KKT point is discussed in
Section III-C. The issues with global convergence in the
absence of convexity assumptions are the same as discussed at
the end of that section, and in particular to improve robustness
we might have to increase the penalty parameter ρ, or update
the Lagrange multipliers more slowly, as in [37]. Decreasing
δ leads to smaller bias in the gradient estimates, however
their variance increases since a small δ in (26) amplifies the
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fluctuations in the instantaneous capacity measurements. A
practical choice of δ depends on the level of noise in these
measurements. Note also that the noisy capacity and gradient
estimates are multiplied by the penalty parameter ρ. Hence
as we increase ρ to increase the region of convergence, the
bias and noise are amplified. For this reason, once close to an
equilibrium configuration (e.g., no visible progress is made),
one should decrease again ρ, possibly setting ρ = 0 to revert
back to a pure primal-dual method.

V. SIMULATIONS

We now illustrate the practical behavior of the
communication-constrained deployment algorithm in three
scenarios. All simulations are performed on a single computer
executing the primal-dual updates for all vehicles. First, Fig.
1 shows snapshots of a robot deployment trajectory for a
problem with no task potential (i.e., G(x) = 0), where the
robots are only used to establish an ad-hoc communication
network. They relay the communications between fixed Base
Stations (BS) that are too far from each other to support the
requested rates. The capacity functions are assumed known
and chosen as

cij(xi,xj) = 4 ln(1 + p(xi,xj)), (29)

with p(xi,xj) =
1

0.1 + 0.25‖xi − xj‖2
, (30)

for all links (i, j), see Fig. 2 and Section II-B. In particular,
it is assumed here that the communication scheme establishes
interference-free links. Note that the quadratic power decay in
(30) is a frequently assumed model, corresponding to channels
with direct line-of-sight propagation only [4, chap. 2]. Fig.
3 shows the evolution of the instantaneous values of the
functions gφi (aφi [k], rφi ·[k], rφ· i[k]), whose average values must
be non-positive at steady-state (see (7)). A spatial configura-
tion for the robots satisfying the desired flow rates is found
after about 8 minutes of real time deployment, assuming the
physical parameters given on Fig. 1. Note that since the link
capacity model is known, the algorithm can alternatively be
run offline for a few seconds (about 10000 iterations) to obtain
open-loop trajectories or simply feasible link rates and final
positions for the robots to reach.

In Scenario 2 depicted on Fig. 4, one robot must approach a
given waypoint at a known position q∗, which is achived with
the task potential (2), while transmitting back some informa-
tion relayed to the base station by the other robots. The robots
must also establish a communication flow between this base
station and another distant one, as in the previous scenario.
The instantaneous channel capacities are now stochastic and
simulated as cij [k; x] = ηij [k]cij(xi,xj), with cij(xi,xj)
given by (29) and {ηij [k]}k an iid sequence of log-normal
random variables with distribution lnN (0, 0.2), see Fig. 2.
Here the robots do not know the model (29) and can only
rely on the fluctuating measurements cij [k; x] taken during
deployment to update their positions and the communication
rates. They implement the two-time-scale SPSA algorithm
described in Section IV-A, and Fig. 6 illustrates the trajectory
of the capacity estimates (23) for one link. As can be seen from
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Fig. 1. Scenario 1: using mobility to deploy an ad-hoc communication
network. BS 2, 3, 4 (the large squares) must send information at unit rate to
BS 1 but are too far away to achieve this rate. Hence there is a single flow
to support, with all information directed toward BS 1. The link capacities
follow the model (29). 12 mobile robots (the small discs) are deployed
using the primal-dual algorithm, with primal and dual variables updated every
50 ms in real time. If one unit of length on the figure represents 100 m,
the maximum velocity of the vehicles is 50 m/s (180 km/hr). A group
configuration achieving the desired communication rates is reached after about
8 minutes in real deployment time (about 9600 iterations of the algorithm),
with ρ = 5, α = 0.02, β = 0.2. The relative magnitudes of the link rates are
represented by the thickness of the lines between terminals.
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Fig. 2. Link capacity function (29) used in the simulations (solid curve),
with random samples for Scenario 2.
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for Scenario 1. In the initial configuration the desired communication rates
are not feasible, but the communication constraints are satisfied about 8 min
after the network starts deploying.
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Fig. 4. In Scenario 2, one designated robot must approach the target denoted
by a cross, placed at x = 1.5 km (the dotted curve shows the robot trajectory).
It generates information for the top BS at unit rate. The bottom BS also
transmits information to the top BS at unit rate, again as part of the same
and unique flow. The other robots spread to establish the necessary links. The
primal and dual variables are updated every 50 ms, using the measurement-
based algorithm and no knowledge of the link capacity model. The maximum
velocity of the vehicles is 10 m/s (36 km/hr), as could be appropriate for
ground robots.
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for Scenario 2. Note that here the communication constraints are essentially
always satisfied during deployment, i.e., the constraint values remain non-
positive.

Fig. 5, the instantaneous routing constraints corresponding to
(11) (and in fact also the instantaneous capacity constraints
corresponding to (12)) are essentially satisfied during the
whole deployment, resulting in short communication delays
and small queues at the terminals. With a variance here of
about 0.27 for the ηij variables, the algorithm exhibits a satis-
fying converging behavior. More generally the performance of
such a finite difference scheme can be sensitive to the level of
measured noise, and additional averaging over several capacity
measurements before moving might be necessary. Variance
reduction in the estimates (23), (25) can also be achieved by
reducing the values of α, β, γ, similarly associated with slower
motion and slower convergence rate of these estimates. The
important role of the choice of stepsizes on the convergence
time of the algorithm, or equivalently, on the time necessary
to deploy the robotic network, is briefly illustrated on Fig. 7.

Finally, Scenario 3 is a communication-constrained cover-
age control problem, i.e., the task potential is (3), with the
probability distribution of the event location Z assumed uni-
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Fig. 6. Sample trajectory of the capacity estimates (23) for the link (1, 2)
in Scenario 2, with γ = 0.2.
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Fig. 7. Duration of deployment vs. choice of stepsize αk ≡ α for Scenario
2. We take βk ≡ β = 10α, γk ≡ 0.2 and δk ≡ 0.01, ρ = 5 in all
simulations. The number of iterations of the primal-dual algorithm is converted
to deployment time by assuming that variables are updated every 50 ms. The
duration indicated is the time until an apparent steady state configuration is
reached by the algorithm. For α > 0.05, the algorithm becomes unstable,
i.e., does not converge to a locally optimum configuration.

form over a square region W, and with the cost c(x) = x2. The
distributed computation of the gradient of the task potential
is described in [22]. Twelve robots are used for coverage
and required to maintain communication with a base station
at a fixed rate. In this scenario we simulate the effect of
interferences between vehicles by taking the capacity functions
to be

cij(x) = 4 ln

(
1 +

p(xi,xj)

0.05 +G
∑
l 6=i p(xl,xj)

)
, (31)

with the received powers p(xl,xm) given by (30), and G =
0.05 (low interferences) or G = 0.2 (high interferences). Note
that it is assumed in (31) that the links originating from a
given transmitter do not interfere with each other, for example
through the use of different frequency tones or time slots.
The instantaneous capacities are simulated as in Scenario 2
by multiplying the capacity functions with log-normal random
variables, and the algorithm used is again the measurement-
based SPSA version. Fig. 8 shows the result of deployment
for the high and low interference regimes. As interferences
increase, the robots need to establish more shorter links
and rely on multi-hop communications to satisfy the rate
requirements, and the robots closer to the base station relay
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(a) High Interferences (G = 0.2)
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Fig. 8. In Scenario 3, a group of 12 robots starts around a BS and executes
a coverage control deployment (task potential (3)), for an event location
distribution uniform in the square [0, 20]× [0, 20]. All robots must maintain
communication with the base station and transmit back information at a rate
of 0.4. As the level of interferences increases, this requires that the robots
send their packets through more routes, and that some robots remain closer
to the BS to act as relays with higher capacity links.

more traffic. Note also that transmission power control could
be included in our framework to help manage interferences [4,
chap. 16].

VI. CONCLUSIONS

A communication constrained robot deployment algorithm
has been presented to jointly optimize the steady-state lo-
cations of a group of unmanned vehicles and the wireless
communication network necessary to support their mission.
An optimization-based approach is proposed, where a general
augmented Lagrangian primal-dual algorithm can drive the
robotic network to a locally optimal final configuration. A
important aspect of this approach is that it can be naturally
used as a measurement based feedback strategy, when no suf-
ficiently reliable prior model of the communication channels
is available. Future work includes adapting the algorithm to
better accommodate vehicles with significant dynamics, and
optimizing the choice of algorithm parameters in different
scenarios based on field experiments.
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