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Abstract—A set of N independent Gaussian linear time-
invariant systems is observed by M sensors whose task is to pro-
vide a steady-state causal estimate minimizing the mean-square
error on the system states, subject to additional measurement
costs. The sensors can switch between systems instantaneously,
and there are additional resource constraints, for example on the
number of sensors that can observe a given system simultane-
ously. We first derive a tractable relaxation of the problem, which
provides a bound on the achievable performance. This bound can
be computed by solving a convex program involving linear matrix
inequalities, and moreover this program can be decomposed into
coupled smaller dimensional problems. In the scalar case with
identical sensors, we give an analytical expression of an index
policy proposed in a more general context by Whittle. In the
general case, we develop open-loop periodic switching policies
whose performance matches the bound arbitrarily closely.

Index Terms—Kalman filtering, switched systems, periodic
control.

I. INTRODUCTION

Advances in sensor networks, networked control systems,
and the development of unmanned vehicle systems for in-
telligence, reconnaissance and surveillance missions require
the development of resource allocation algorithms to manage
the measurements originating from a large number of sensors
observing a large number of targets, see e.g. [1]–[4]. These
problems have a long history [5], and include static sensor
scheduling problems as well as trajectory optimization sce-
narios for mobile sensors [4], [6]. In this paper, we consider
M sensors tracking the state of N sites or targets in contin-
uous time. The targets can be described by N plants with
independent linear time-invariant dynamics

ẋi = Aixi +Biui + wi, xi(0) = xi,0, i = 1, . . . , N.

We assume that the plant controls ui(t) are deterministic and
known for t ≥ 0. Each driving noise wi(t) is a stationary
white Gaussian noise process with zero mean and known
power spectral density matrix Wi, i.e, Cov(wi(t), wi(t

′)) =
Wi δ(t−t′), ∀t, t′. The initial conditions are random variables
with known mean x̄i,0 and covariance matrices Σi,0. By inde-
pendent dynamics we mean that the noise processes and initial
conditions xi,0 of the different plants are all independent. We
also make the following assumption.
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Assumption 1: The matrices Σi,0 are positive definite for
all i ∈ {1, . . . , N}.
This can be achieved by adding an arbitrarily small multiple of
the identity matrix to a potentially non-invertible matrix Σi,0.
We have M sensors to observe the N plants. If sensor j is
used to observe plant i, we obtain the linear measurements

yij = Cijxi + vij .

Here vij is a stationary white Gaussian noise process with
power spectral density matrix Vij , assumed to be positive
definite. Also, for simplicity we take vij to be independent
of the other measurement noises, process noises, and initial
states. Finally, to guarantee convergence of the filters later on,
we make the following assumptions.

Assumption 2: For all i ∈ {1, . . . , N}, the pair (Ai, C̃i) is
detectable, where C̃i = [CTi1, . . . , C

T
iM ]T .

Assumption 3: For all i ∈ {1, . . . , N}, the pair (Ai,W
1/2
i )

is controllable.
Let us define

πij(t) =

{
1 if plant i is observed at time t by sensor j

0 otherwise.

We assume that each sensor can observe at most one system
at each instant, hence we have the constraint

N∑
i=1

πij(t) ≤ 1, ∀t, j = 1, . . . ,M. (1)

If instead sensor j is required to be always operated, constraint
(1) should simply be changed to

N∑
i=1

πij(t) = 1. (2)

The equality constraint could be useful in scenarios involving
sensors mounted on unmanned vehicles for example, where it
might not be possible to withdraw a vehicle from operation
during the mission. We also add the following constraint,
similar to the one used by Athans [7]. We suppose that each
system can be observed by at most one sensor at each instant,
so we have

M∑
j=1

πij(t) ≤ 1, ∀t, i = 1, . . . , N. (3)

Similarly if system i must always be observed by some sensor,
constraint (3) can be changed to an equality constraint

M∑
j=1

πij(t) = 1. (4)

Note that a sensor in our discussion can correspond to a
combination of several physical sensors, and so the constraints
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above can capture seemingly more general problems where
we allow for example more that one measurement per system
simultaneously. Using (4) we could also impose a constraint
on the total number of allowed observations at each time.
Indeed, consider a constraint of the form

∑N
i=1

∑M
j=1 πij(t) ≤

p, for some positive integer p. This constraint means that
M−p sensors are required to be idle at each time. To enforce
such a requirement, we can create M − p “dummy” systems
(simple scalar stable systems to minimize computations), and
associate constraint (4) to each of them. Then we simply do
not include these systems in the objective function (5) below.

We consider an infinite-horizon average-cost problem. We
wish to design an observation policy π(t) = {πij(t)} satisfy-
ing the constraints (1), (3), or their equality versions, and a
causal estimator x̂π of x, i.e., depending only on the past and
current observations produced by the observation policy, such
that the average error covariance is minimized, in addition to
some sensor utilization costs. The policy π itself can also only
depend on the past observations. More precisely, we wish to
compute

γ = min
π,x̂π

lim
T→∞

1

T
E

[∫ T

0

N∑
i=1

(
(xi − x̂π,i)′Ti(xi − x̂π,i) (5)

+

M∑
j=1

κij πij(t)
)
dt

]
,

where the constants κij ∈ R are a cost paid per unit of time
when plant i is observed by sensor j, the Ti’s are positive
semidefinite weighting matrices, and lim denotes the upper
limit.

Literature review and contributions of this paper. The
sensor scheduling problem presented above, except for minor
variations, is an infinite horizon version of the problem studied
by Athans in [7], who considered the case N = 1. We
include here several plants to show how their independent
evolution property can be leveraged in the computations, using
the dual decomposition method from optimization. Finite-
horizon continuous-time versions of the problem, besides the
presentation of Athans [7], have been the subject of several
papers [8]–[11]. The solutions proposed involve computational
procedures that scale poorly with the dimension of the prob-
lem. Discrete-time versions of this sensor selection problem
have also received a significant amount of attention, see e.g.
[2], [5], [6], [12]–[16]. All algorithms proposed so far for the
discrete-time problem, except for the optimal greedy policy in
the completely symmetric case [15], either run in exponential
time or consist of heuristics with no a priori performance
guarantee.

Somewhat surprisingly however, and with the exception
of [17], it seems that the infinite-horizon continuous-time
version of the Kalman filter scheduling problem has not been
considered previously. Mourikis and Roumeliotis [17] also
consider initially a discrete-time version of the problem for
a particular robotic application. To cope with the difficulty of
determining a sensor schedule, they assume instead a model
where each sensor can independently take measurements at
a constant frequency, and seek the optimal measurement fre-
quencies. In fact, they obtain these frequencies by introducing

heuristically a continuous-time Riccati equation, and show that
the frequencies can then be computed by solving a semidefinite
program. In contrast, we consider the more standard schedule-
based version of the problem in continuous time, which is a
priori more constraining. We show that essentially the same
convex program provides in fact a lower bound on the cost
achievable by any measurement policy. We also provide addi-
tional insight into the decomposition of the computations of
this program, which can be useful in the framework of [17] as
well. As demonstrated experimentally in [17], the continuous-
time formulation of the problem provides a good heuristic
policy even if the filters are implemented digitally, as long as
the sampling frequencies are sufficiently fast with respect to
the plant dynamics. Moreover, the continuous-time objective
(5) has some advantages over purely discrete formulations
for sampled-data systems, since these ignore the intersample
behavior [18].

The rest of the paper is organized as follows. Section
II briefly recalls that for a fixed policy π(t), the optimal
estimator is obtained by the Kalman-Bucy filter. The properties
of the Kalman filter (independence of the error covariance
matrix with respect to the measurement values) imply that the
remaining problem of finding the optimal scheduling policy
π is a deterministic control problem. In section III we treat a
simplified scalar version of the problem with identical sensors
as a special case of the classical “Restless Bandit Problem”
(RBP) [19]. We provide analytical expressions for an index
policy and for the elements necessary to compute efficiently a
lower bound on performance, both of which were proposed in
the general setting of the RBP by Whittle. Then, for the mul-
tidimensional case treated in full generality in section IV, we
show that the lower bound on performance can be computed by
solving a convex program involving linear matrix inequalities.
This lower bound can be approached arbitrarily closely by
a family of new periodically switching policies described in
section IV-C. Approaching the bound with these policies is
limited only by the frequency with which the sensors can
actually switch between the systems. In general, our solution
has much more attractive computational properties than the
solutions proposed so far for the finite-horizon problem.

II. OPTIMAL ESTIMATOR

For a given observation policy π(t) = {πij(t)}i,j , the
minimum variance filter is given by the Kalman-Bucy filter
[20], see [7]. The state estimates x̂π , where the subscript
indicates the dependency on the policy π, are all updated in
parallel following the stochastic differential equations

d

dt
x̂π,i(t) = Aix̂π,i(t) +Bi(t)ui(t)

− Σπ,i(t)

 M∑
j=1

πij(t)C
T
ijV
−1
ij (Cij x̂π,i(t)− yij(t))

 ,

with x̂π,i(0) = x̄i,0, for 1 ≤ i ≤ N . The resulting estimator is
unbiased and the error covariance matrix Σπ,i(t) for system i
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satisfies the matrix Riccati differential equation

d

dt
Σπ,i(t) =AiΣπ,i(t) + Σπ,i(t)A

T
i +Wi (6)

− Σπ,i(t)

 M∑
j=1

πij(t)C
T
ijV
−1
ij Cij

Σπ,i(t),

where Σπ,i(0) = Σi,0. With this result, we can reformulate
the optimization of the observation policy as a deterministic
optimal control problem. Rewriting E((xi−x̂i)′Ti(xi−x̂i)) =
Tr (Ti Σi), the problem (5) asks to compute

γ = min
π

lim
T→∞

1

T

[∫ T

0

N∑
i=1

(
Tr (Ti Σπ,i(t)) (7)

+

M∑
j=1

κij πij(t)

 dt

 ,
subject to the constraints (1), (3), or their equality versions,
and the dynamics (6).

III. PLANTS WITH SCALAR DYNAMICS AND IDENTICAL
SENSORS

Before considering the problem in the general multidimen-
sional case, we first assume in this section that

1) the sites or targets have one-dimensional dynamics, i.e.,
xi ∈ R, i = 1, . . . , N ; and,

2) all the sensors are identical, i.e., Cij = Ci, Vij =
Vi, κij = κi, j = 1, . . . ,M .

In this case we can obtain additional insight based on previous
work in dynamic scheduling, which also suggests a good pol-
icy to follow during the transient regime. We can simplify the
problem formulation introduced above so that it corresponds
exactly to a special case of the Restless Bandit Problem (RBP)
[19]. We define

πi(t) =

{
1 if plant i is observed at time t by a sensor

0 otherwise.

Since we assumed that a system can be observed by at most
one sensor, we can take M ≤ N . Note that a constraint (4) for
some system i can be eliminated, by removing one available
sensor that is always measuring system i. Constraints (2) and
(3) can then be replaced by the single constraint

N∑
i=1

πi(t) = M, ∀t.

This constraint means that at each period, exactly M of the
N sites are observed. We treat this case in this section, but
again the equality sign can be replaced by an inequality with
very little change in our discussion.

To obtain a lower bound on the achievable performance,
denoted γ in the following, we relax the constraint to enforce
it only on average

lim
T→∞

1

T

∫ T

0

N∑
i=1

πi(t)dt = M. (8)

Then we adjoin this constraint to the initial objective using a
(scalar) Lagrange multiplier λ to form the Lagrangian

L(π, λ) = lim
T→∞

1

T

∫ T

0

N∑
i=1

[Tr (Ti Σπ,i(t))

+(κi + λ)πi(t)] dt− λM.

Here κi is the cost per time unit for observing site i . The
optimization problem with the relaxed constraint (8) can be
expressed as

γ = inf
π

sup
λ
L(π, λ) = sup

λ
inf
π
L(π, λ),

where the exchange of the supremum and the infimum can
be justified using a minimax theorem for constrained dynamic
programming [21, chap.1]. Now consider the computation of
the dual function

γ
d
(λ) := inf

π
lim
T→∞

1

T

∫ T

0

N∑
i=1

[Tr (TiΣπ,i(t))

+(κi + λ)πi(t)] dt− λM,

with γ = supλ γd(λ). The dynamics of the systems are
decoupled and the only coupling constraint was adjoined to
the objective, so we can compute γ

d
(λ) =

∑N
i=1 γ

i(λ)−λM ,
where

γi(λ) := inf
πi

lim
T→∞

1

T

∫ T

0

Tr (Ti Σπi,i(t)) + (κi + λ)πi(t)dt,

(9)
by solving individually N similar optimal control problems,
one for each system. When the dynamics of the systems are
one-dimensional, i.e., Σi ∈ R+, we can solve the optimal
control problem (9) for each site analytically, and hence we
obtain an analytical expression of the dual function, which
provides a lower bound on the cost for each λ. Maximizing the
concave function γ

d
(λ) over λ yields the performance bound

γ, with γ ≤ γ. The computations are presented in paragraph
(III-B). First, we explain how these computations also provide
the elements necessary to design a scheduling policy.

A. Restless Bandits

The RBP was introduced by Whittle in [19] as a general-
ization of the classical Multi-Armed Bandit Problem (MABP),
which was first solved by Gittins [22]. In the RBP, we have N
projects evolving independently, M of which can be activated
at each time. Projects that are active can evolve according
to different dynamics than projects that remain passive. In
our problem, the projects correspond to the systems and
their activation corresponds to taking a measurement. The
active and passive dynamics are described by a Riccati and
a Lyapunov differential equation respectively, as explained in
the next subsection. We describe the index policy proposed
by Whittle for the RBP in our particular context. Although
suboptimal in general, Whittle’s index policy generalizes the
index policy of Gittins’, which is known to be optimal in the
case of the MABP.

Consider the objective (9) for system i. Clearly, the La-
grange multiplier λ can be interpreted as a tax penalizing
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measurements of the system. As λ increases, the passive action
(i.e., not measuring) should become more attractive. For a
given value of λ, let us denote Pi(λ) the set of values of Σi
(with Pi(λ) ⊂ R+) for which the passive action is optimal.
We use the following definition.

Definition 4: System i is indexable if and only if Pi(λ) is
monotonically increasing (in the sense of set inclusion) from
∅ to R+ as λ increases from −∞ to +∞. If system i is
indexable, we define its Whittle index as the function Σi 7→
λi(Σi), with λi(Σi) = inf{λ ∈ R : Σi ∈ Pi(λ)}.

The indexability requirement appears natural, yet Whittle
provided an example of an RBP where it is not verified.
We will see in the next paragraph, however, that for our
particular problem, at least in the scalar case, indexability of
the systems is guaranteed. The idea behind the definition of
the Whittle index consists in defining an intrinsic “value” for
the measurement of system i, taking into account both the
immediate and future gains. If the covariance of system i is
Σi, the Whittle index defines this value as the measurement
tax (potentially negative) that should be required to make the
controller indifferent between measuring and not measuring
the system. Finally, if all the systems are indexable, the Whittle
policy chooses to measure the M systems with highest current
index at each instant. There is significant experimental data
and some theoretical evidence indicating that the performance
of this policy is often very close to optimal, see e.g. [23]–[25]
and section IV-C4.

B. Solution of the Scalar Optimal Control Problem

We can now consider problem (9) for a single site, dropping
the index i. In the scalar case, the dynamical evolution of the
variance obeys the equation

Σ̇ = 2AΣ +W − πC
2

V
Σ2, with π(t) ∈ {0, 1}.

The Hamilton-Jacobi-Bellman (HJB) equation is

γ(λ) = min
{
T Σ + (2AΣ +W )h′(Σ;λ), (10)

T Σ + κ+ λ+ (2AΣ +W − C2

V
Σ2)h′(Σ;λ)

}
,

where h is the relative value function. Consider the algebraic
Riccati equation (ARE)

2Ax+W − C2

V
x2 = 0.

First, if T = 0, it is clearly optimal to always observe if λ+
κ < 0 and never observe otherwise. Hence the Whittle index
is λ(Σ) = −κ for all Σ ∈ R+, and γ(λ) = min{κ + λ, 0}.
So we can now assume T > 0. If C = 0, again we should
always observe if (κ + λ) < 0 and never observe otherwise.
Hence the Whittle index is again λ(Σ) = −κ for all Σ ∈ R+

and we get

for C=0: γ(λ) =


−T W

2A + min{κ+ λ, 0}

if the system is stable (A < 0)

+∞ otherwise (A ≥ 0),

by letting Σ = −W
2A in the HJB equation for a stable system.

The second case is clear from the fact that the system is
unstable and cannot be measured. So we can now assume that
C 6= 0. Then the ARE has two roots

x1 =
A−

√
A2 + C2W/V

C2/V
, x2 =

A+
√
A2 + C2W/V

C2/V
.

By assumption 3, W 6= 0 and so x1 is strictly negative and
x2 is strictly positive. We can treat the case κ + λ ≤ 0
immediately. Then it is obviously optimal to always observe,
and we get γ(λ) = T x2 + κ + λ by letting Σ = x2 in the
HJB equation.

So from now on we can assume λ > −κ. Let us temporarily
assume the following result on the form of the optimal policy.
The validity of this assumption can be verified a posteriori
from the formulas obtained below, using the fact that the
dynamic programming equation provides a sufficient condition
for optimality of a solution.

Form of the optimal policy. The optimal policy is a threshold
policy, i.e., it observes the system for Σ ≥ Σth and does not
observe for Σ < Σth, for some Σth ∈ R+.

We would like to obtain the value of the average cost γ(λ)
and of the threshold Σth(λ). Note that the passive region P(λ)
of definition 4 is P(λ) = [0,Σth(λ)], and we already know
Σth(λ) = 0 for λ ≤ −κ. The system is indexable if and only
if Σth(λ) is an nondecreasing function of λ, and then inverting
the relation λ 7→ Σth(λ) gives the Whittle index Σ 7→ λ(Σ).
The analysis now considers several cases.

1) Case Σth ≤ x2: In this case, we obtain as above

γ(λ) = T x2 + κ+ λ, (11)

by letting Σ = x2 in the HJB equation. Then for Σ ≥ Σth,
we have

Tx2 + κ+ λ = TΣ + κ+ λ− C2

V
(Σ− x2)(Σ− x1)h′(Σ)

so h′(Σ) =
TV

C2(Σ− x1)
,

including for the value Σ = x2 by assuming h′ to be
continuous. By continuity of h at the interface between the
active and passive regions, we have

T Σth + (2AΣth +W )h′(Σth) = T Σth + (κ+ λ)

+(2AΣth +W − C2

V
Σ2
th)h′(Σth)

i.e.,

κ+ λ =
C2

V
Σ2
th h

′(Σth) =
TΣ2

th

Σth − x1
,

and hence,

λ(Σth) = −κ+
TΣ2

th

Σth − x1
, (12)

Σth(λ) =

κ+λ
T +

√
(κ+λ
T )(κ+λ

T − 4x1)

2
. (13)

Expressions (11) and (12), (13) are valid under the condition
Σth(λ) ≤ x2. Note from (12) that Σth 7→ λ(Σth) is an
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increasing function and the functions λ(·) and Σth(·) are
inverse of each other.

2) Case Σth > x2: It turns out that in this case we must
distinguish between stable and unstable systems. For a stable
system (A < 0), the Lyapunov equation

2Ax+W = 0

has a strictly positive solution xe = −W
2A , with xe > x2 since

C 6= 0.

Stable System (A < 0) with Σth ≥ xe:
In this case we know that xe is in the passive region. Hence,

with Σ = xe in the HJB equation, we get

γ(λ) = Txe. (14)

Then for Σ ≤ Σth we have that Txe = TΣ+2A(Σ−xe)h′(Σ),
and so h′(Σ) = − T

2A , including for Σ = xe by assuming h′

continuous. Again by continuity at the interface between the
active and passive regions, we have

κ+ λ =
C2

V
Σ2
th h

′(Σth) = −C
2T

2AV
Σ2
th

so λ(Σth) = −κ+
C2TΣ2

th

2|A|V
, Σth(λ) =

√
2|A|V λ+κ

T

|C|
.

(15)

Stable System (A < 0) with x2 < Σth < xe, or non-stable
system (A ≥ 0):

If the system is marginally stable or unstable, we cannot
define xe. We can think of this case as xe →∞ as A→ 0−,
and treat it simultaneously with the case where the system
is stable and x2 < Σth < xe. Then x2 is in the passive
region, and xe is in the active region, so the prefactors of h′(x)
in the HJB equation do not vanish. There is no immediate
relation providing the value of γ(λ). We can use the smooth-
fit principle to handle this case and obtain the expression of the
Whittle indices, following [19]. Again the formal justification
comes from using the final expression of the value function
thus obtained to verify that it indeed satisfies the HJB equation.

Theorem 1 (modification of [19], [26]): Consider a contin-
uous-time one-dimensional restless bandit project x(t) ∈ R
satisfying

ẋ(t) = ak(x), k = 0, 1,

with passive and active cost rates rk(x), k = 0, 1. Assume
that a0(x) does not vanish in the optimal passive region, and
a1(x) does not vanish in the optimal active region. Then the
Whittle index is given by

λ(x) =r0(x)− r1(x)

+
[a1(x)− a0(x)][a0(x)r′1(x)− a1(x)r′0(x)]

a0(x)a′1(x)− a1(x)a′0(x)
.

Remark 5: The assumption that a0 and a1 do not vanish in
the optimal passive and active regions respectively excludes
the cases previously studied. It is missing from [19], [26],
which therefore provide only an incomplete description of
the Whittle indices for one-dimensional continuous-time de-
terministic projects.

Proof: The derivation of the expression of the Whittle
index can be found in [19], [26, p.53], and is valid only under
the additional assumption mentioned above.

Corollary 6: The Whittle index for the case x2 < Σth < xe
is given by:

λ(Σth) = −κ+
C2

2V

TΣ3
th

AΣth +W
. (16)

Proof: For x2 < Σth < xe, the assumptions of theorem
1 are verified with

a0(Σ) = 2AΣ +W, a1(Σ) = 2AΣ +W − C2

V
Σ2

r0(Σ) = TΣ, r1(Σ) = TΣ + κ.

The result follows by a straightforward calculation. We can
verify that the expression for λ(Σ) defines an increasing
function of Σ.

With the value of the Whittle index, we can finish the com-
putation of the lower bound γ(λ) for the case x2 < Σth < xe.
Inverting the relation (16), we obtain, for a given value of λ,
the boundary Σth(λ) between the passive and active regions.
Σth(λ) verifies the depressed cubic equation

X3 − 2V (λ+ κ)

TC2
AX − 2V (λ+ κ)

TC2
W = 0. (17)

For λ+κ > 0, by Descartes’ rule of signs, this polynomial has
exactly one positive root, which is Σth(λ). The HJB equation
then reduces to

γ(λ) = TΣ + h′(Σ)(2AΣ +W ), for Σ < Σth(λ) (18)

γ(λ) = TΣ + κ+ λ+ h′(Σ)(2AΣ +W − C2

V
Σ2), (19)

for Σ ≥ Σth(λ).

Now for x2 < Σth(λ) < xe, letting x = Σth(λ) > 0 in the
HJB equation, assuming continuity of h′ at the boundary of
the passive and active regions and eliminating h′(Σth(λ)), we
get

γ(λ) =TΣth(λ) + κ+ λ

+ (γ − TΣth(λ))

(
1− C2

V

(Σth(λ))2

2AΣth(λ) +W

)
,

thus,

(γ(λ)− TΣth(λ))

(
C2

V

(Σth(λ))2

2AΣth(λ) +W

)
= κ+ λ

and hence finally, for x2 < Σth(λ) < xe we have

γ(λ) = TΣth(λ) +
V (κ+ λ)(2AΣth(λ) +W )

C2(Σth(λ))2
.

3) Summary: We collect the computations above in the
following theorem.

Theorem 2: In the one-dimensional Kalman filter schedul-
ing problem with identical sensors, the systems are indexable.
For system i, the Whittle index λi(Σi) is given as follows:
• Case Ci = 0 or Ti = 0: λi(Σi) = −κi, for all Σi ∈ R+.
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• Case Ci 6= 0 and Ti 6= 0:

λi(Σi) =


−κi +

TiΣ
2
i

Σi−x1,i
if Σi ≤ x2,i,

−κi +
C2
i TiΣ

3
i

2Vi(AiΣi+Wi)
if x2,i < Σi < xe,i,

−κi +
TiC

2
i Σ2

i

2|Ai|Vi if xe,i ≤ Σi,

with xe,i the root of the Lyapunov equation, the convention
xe,i = +∞ if Ai ≥ 0, and x1,i, x2,i the roots of the ARE.
The lower bound on the achievable performance is obtained
by maximizing the concave function

γ
d
(λ) =

N∑
i=1

γi(λ)− λM (20)

over λ, where the term γi(λ) is given by

• Case Ti = 0 : γi(λ) = min{λ+ κi, 0}.
• Case Ti 6= 0, Ci = 0: γi(λ) = TiWi

2|Ai| + min{λ+ κi, 0} if
Ai < 0, γi(λ) = +∞ if Ai ≥ 0.

• Case Ci 6= 0 and Ti 6= 0:

γi(λ) =



Ti x2,i + κi + λ if λ ≤ λi(x2,i),

Ti Σ∗i (λ) +
Vi(κi+λ)(2AiΣ

∗
i (λ)+Wi)

C2
i (Σ∗

i (λ))2

if λi(x2,i) < λ < λi(xe,i),

Ti xe,i if λi(xe,i) ≤ λ.

where in the second case Σ∗i (λ) is the unique positive root of
(17).

Proof: The indexability comes from the fact that the
indices λi(Σi) are verified to be monotonically increasing
functions of Σi. Inverting the relation we obtain Σth,i(λ) as
the variance for which we are indifferent between the active
and passive actions. As we increase λ, Σth,i(λ) increases and
the passive region (the interval [0,Σth,i(λ)]) increases.

IV. MULTIDIMENSIONAL SYSTEMS

Generalizing the computations of the previous section to
multidimensional systems requires solving the corresponding
optimal control problem in higher dimensions, for which
it is not clear that a closed form solution exist. Moreover
we have considered in section III a particular case of the
sensor scheduling problem where all sensors are identical.
We now return to the general multidimensional problem and
sensors with possibly distinct characteristics, as described in
the introduction.

For the infinite-horizon average cost problem, we show
that computing the value of a lower bound similar to the
one presented in section III reduces to a convex optimization
problem involving, at worst, Linear Matrix Inequalities (LMI)
whose size grows polynomially with the problem’s essential
parameters. Moreover, one can further decompose the compu-
tation of this convex program into N coupled subproblems as
in the one-dimensional restless bandit case.

A. Performance Bound

For convenience, let us repeat the deterministic optimal
control problem under consideration:

min
π

lim
T→∞

1

T

∫ T

0

N∑
i=1

Tr(Ti Σi(t)) +

M∑
j=1

κijπij(t)

 dt,

(21)

s.t. Σ̇i(t) = AiΣi + ΣiA
T
i +Wi

− Σi

 M∑
j=1

πij(t)C
T
ijV
−1
ij Cij

Σi, i = 1 . . . , N, (22)

πij(t) ∈ {0, 1}, ∀t ≥ 0, i = 1 . . . , N, j = 1, . . . ,M,
N∑
i=1

πij(t) ≤ 1, ∀t ≥ 0, j = 1, . . . ,M, (23)

M∑
j=1

πij(t) ≤ 1, ∀t ≥ 0, i = 1, . . . , N, (24)

Σi(0) = Σi,0, i = 1, . . . , N.

Here we consider the constraints (1) and (3), but any combi-
nation of inequality and equality constraints from (1)-(4) can
be used without changing the argument for the derivation of
the performance bound. We define the following quantities:

π̃ij(T ) =
1

T

∫ T

0

πij(t)dt, ∀T ≥ 0. (25)

Since πij(t) ∈ {0, 1} we must have 0 ≤ π̃ij(T ) ≤ 1. Our
first goal, inspired by the idea already exploited in the restless
bandit problem, is to obtain a lower bound on the cost of the
finite-horizon optimal control problem in terms of the numbers
π̃ij(T ) instead of the functions πij(t).

It will be easier to work with the information matrices
Qi(t) = Σ−1

i (t). Hence we replace the dynamics (22) by the
equivalent

Q̇i = −QiAi −ATi Qi −QiWiQi+

M∑
j=1

πij(t)C
T
ijV
−1
ij Cij ,

i = 1, . . . , N. (26)

Let us also define, for all T ≥ 0,

Σ̃i(T ) :=
1

T

∫ T

0

Σi(t)dt, Q̃i(T ) :=
1

T

∫ T

0

Qi(t)dt.

By linearity of the trace operator, we can rewrite the objective
function

lim
T→∞

N∑
i=1

Tr(Ti Σ̃i(T )) +

M∑
j=1

κij π̃ij(T )

 .

Let Sn,Sn+,Sn++ denote the set of symmetric, symmetric
positive semidefinite and symmetric positive definite matrices
respectively. A function f : Rm → Sn is called matrix convex
if and only if for all x, y ∈ Rm and α ∈ [0, 1], we have

f(αx+ (1− α)y) � αf(x) + (1− α)f(y),

where � refers to the usual partial order on Sn, i.e., A � B if
and only if B − A ∈ Sn+. Equivalently, f is matrix convex if
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the scalar functions x 7→ zT f(x)z are convex for all vectors
z. The following lemma will be useful

Lemma 7: The functions

Sn++ → Sn++ Sn → Sn

X 7→ X−1 X 7→ XWX

for W ∈ Sn+, are matrix convex.
Proof: See [27, p.76, p.110].

A consequence of this lemma is that Jensen’s inequality is
valid for these functions. We use it first as follows

∀T,

(
1

T

∫ T

0

Σi(t)dt

)−1

� 1

T

∫ T

0

Qi(t)dt = Q̃i(T ),

hence

∀T, Σ̃i(T ) � (Q̃i(T ))−1.

and so
Tr(Ti Σ̃i(T )) ≥ Tr(Ti (Q̃i(T ))−1).

Next, integrating (26) and letting Qi,0 = Σ−1
i,0 , we have

1

T
(Qi(T )−Qi,0) = −Q̃i(T )Ai −ATi Q̃i(T )

− 1

T

∫ T

0

Qi(t)WiQi(t)dt+

M∑
j=1

(
1

T

∫ T

0

πij(t)dt

)
CTijV

−1
ij Cij ,

i.e.,
1

T
(Qi(T )−Qi,0) = −Q̃i(T )Ai −ATi Q̃i(T )

− 1

T

∫ T

0

Qi(t)WiQi(t)dt+

M∑
j=1

π̃ij(T )CTijV
−1
ij Cij .

Using Jensen’s inequality and lemma 7 again, we have

1

T

∫ T

0

Qi(t)WiQi(t)dt � Q̃i(T )WiQ̃i(T ),

and so we obtain
1

T
(Qi(T )−Qi,0) � −Q̃i(T )Ai −ATi Q̃i(T )

− Q̃i(T )WiQ̃i(T ) +

M∑
j=1

π̃ij(T )CTijV
−1
ij Cij . (27)

Last, since Qi(T ) � 0, this implies, for all T ,

Q̃i(T )Ai +ATi Q̃i(T ) + Q̃i(T )WiQ̃i(T )

−
M∑
j=1

π̃ij(T )CTijV
−1
ij Cij �

Qi,0
T

. (28)

So we see that for a fixed policy π and any time T , the
quantity

N∑
i=1

Tr(Ti Σ̃i(T )) +

M∑
j=1

κij π̃ij(T )

 (29)

is bounded below by the quantity

N∑
i=1

Tr(Ti (Q̃i(T ))−1) +

M∑
j=1

κij π̃ij(T )

 ,

where the matrices Q̃i(T ) and the number π̃ij(T ) are subject
to the constraints (28) as well as

0 ≤ π̃ij(T ) ≤ 1, i = 1, . . . , N, j = 1, . . . ,M,
N∑
i=1

π̃ij(T ) ≤ 1, j = 1, . . . ,M,

M∑
j=1

π̃ij(T ) ≤ 1, i = 1, . . . , N.

Hence for any T , the quantity Z∗(T ) defined below is a lower
bound on the value of (29) for any choice of policy π

Z∗(T ) = min
Qi,pij

N∑
i=1

Tr(TiQ
−1
i ) +

M∑
j=1

κijpij

 , (30)

s.t. QiAi +ATi Qi +QiWiQi −
M∑
j=1

pijC
T
ijV
−1
ij Cij �

Qi,0
T

,

i = 1 . . . , N, (31)
Qi � 0, i = 1 . . . , N,

0 ≤ pij ≤ 1, i = 1 . . . , N, j = 1, . . . ,M,
N∑
i=1

pij ≤ 1, j = 1, . . . ,M,

M∑
j=1

pij ≤ 1, i = 1, . . . , N.

Now replace the right-hand side of (31) by zero, to get

QiAi +ATi Qi +QiWiQi −
M∑
j=1

pijC
T
ijV
−1
ij Cij � 0, (32)

for i = 1 . . . , N , and call the corresponding optimum value
Z∗. Defining δ := 1/T , and rewriting with a slight abuse
of notation Z∗(δ) instead of Z∗(T ) for δ positive, we also
define Z∗(0) = Z∗. Note that Z∗(0) is finite, since we can
find a feasible solution as follows. For each i, form a matrix
P = [pij ] satisfying the constraints and such that pij > 0
for all i, j. Such a matrix is easy to find if we consider the
inequality constraints (1) and (3), since we can simply take
pij = 1/max(M,N) for all i, j. If equality constraints are
involved instead, such a matrix P exists as a consequence
of Birkhoff theorem [28], see Theorem 8. Now we consider
the quadratic inequality (32) for some value of i. From the
detectability assumption 2 and the choice of pij , we deduce
that the pair (Ai, Ĉi), with

Ĉi =
[ √

pi1 C
T
i1V
−1/2
i1 · · · √piM CTiMV

−1/2
iM

]T
(33)

is detectable. Also note that

ĈTi Ĉi =

M∑
j=1

pij C
T
ijV
−1
ij Cij .

Together with the controllability assumption 3, we then know
that (32) has a positive definite solution Q̃i [29, theorem
2.4.25]. Hence Z∗(0) is finite.

We can also define Z∗(δ) for δ < 0, by changing the right-
hand side of (31) into δQi,0 = −|δ|Qi,0. We have that Z∗(δ)
is finite for δ < 0 and |δ| small enough. Indeed, passing the
term δQi,0 on the left hand side, this can then be seen as a
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perturbation of the matrix Ĉi above, and for |δ| small enough,
detectability, which is an open condition, is preserved. Now
we will see below that (30) is a convex program. It is then a
standard result of perturbation analysis (see e.g. [27, p. 250])
that Z∗(δ) is a convex function of δ, hence continuous on the
interior of its domain, in particular continuous at δ = 0. So

lim
T→∞

Z∗(T ) = lim
T→∞

Z∗(T ) = Z∗.

Finally, for any policy π, we obtain the following lower bound
on the achievable cost

lim
T→∞

1

T

∫ T

0

N∑
i=1

{
Tr(Ti Σi(t)) +

M∑
j=1

κijπij(t)

}
dt

≥ lim
T→∞

Z∗(T ) = Z∗.

We now show how to compute Z∗ by solving a convex pro-
gram involving linear matrix inequalities. For each i, introduce
a new (slack) matrix variable Ri. Since Qi � 0, Ri � Q−1

i is
equivalent, by taking the Schur complement, to[

Ri I

I Qi

]
� 0,

and the Riccati inequality (32) can be rewritten[
QiAi +ATi Qi −

∑M
j=1 pijC

T
ijV
−1
ij Cij QiW

1/2
i

W
1/2
i Qi −I

]
� 0.

We finally obtain the semidefinite program

Z∗ = min
Ri,Qi,pij

N∑
i=1

Tr(TiRi) +

M∑
j=1

κijpij

 , (34)

s.t.

[
Ri I

I Qi

]
� 0, Qi � 0, i = 1, . . . , N,[

QiAi +ATi Qi −
∑M
j=1 pijC

T
ijV
−1
ij Cij QiW

1/2
i

W
1/2
i Qi −I

]
� 0,

i = 1, . . . , N,

0 ≤ pij ≤ 1, i = 1 . . . , N, j = 1, . . . ,M,
N∑
i=1

pij ≤ 1, j = 1, . . . ,M, (35)

M∑
j=1

pij ≤ 1, i = 1, . . . , N.

Hence solving the program (34) provides a lower bound on
the achievable cost for the original optimal control problem.

B. Problem Decomposition

It is well-know that efficient methods exist to solve (34)
in polynomial time, which implies a computation time poly-
nomial in the number of variables of the original problem.
Still, as the number of targets increases, the large semidefinite
program (34) becomes difficult to solve. Note however that it
can be decomposed into N small coupled programs, following
the dual decomposition approach already used for the restless

bandit problem. This decomposition is sometimes useful to
solve large scale programs with a large number of systems.
For completeness, we present the argument in more details
below.

We first note that (35) is the only constraint that links the
N subproblems together. So we form the Lagrangian

L(R,Q, p;λ) =

N∑
i=1

Tr(TiRi) +

M∑
j=1

(κij + λj)pij


−

M∑
j=1

λj ,

where λ ∈ RM+ is a vector of Lagrange multipliers. We would
take λ ∈ RM if we had the constraint (2) instead of (1). Now
the dual function is

G(λ) =

N∑
i=1

Gi(λ)−
M∑
j=1

λj , (36)

with, for each i = 1, . . . , N,

Gi(λ) = min
Ri,Qi,{pij}Mj=1

Tr(TiRi) +

M∑
j=1

(κij + λj)pij ,

(37)

s.t.

[
Ri I

I Qi

]
� 0, Qi � 0,[

QiAi +ATi Qi −
∑M
j=1 pijC

T
ijV
−1
ij Cij QiW

1/2
i

W
1/2
i Qi −I

]
� 0,

M∑
j=1

pij ≤ 1, 0 ≤ pij ≤ 1, j = 1, . . . ,M.

Note that each program (37) involves only two matrix variables
in contrast to (34), which has 2N matrix variables.

The optimization algorithm proceeds then as follows [30,
chap. 11]. We choose an initial value λ1 ≥ 0 and set k = 1.

1) For i = 1, . . . , N , compute Rki , Q
k
i , {pkij}1≤j≤M opti-

mal solution of (37), and the value Gi(λk).
2) The value of the dual function at λk is given by (36).

A supergradient of G(λk) at λk is given by[
N∑
i=1

pki1 − 1, . . . ,

N∑
i=1

pkiM − 1

]
.

3) Compute λk+1 in order to maximize G(λ). We can do
this by using a supergradient algorithm, or any preferred
nonsmooth optimization algorithm. Increment k and
go to step 1, or stop according to some convergence
criterion.

Because the initial program (34) is convex and strictly fea-
sible, we know that the optimal value of the dual optimization
problem is equal to the optimal value of the primal. Moreover,
the optimal variables of the primal are obtained at step 1 of
the algorithm above once convergence has been reached.
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C. Open-loop Periodic Policies Achieving the Performance
Bound

1) Definition of the Policies: In this section we describe a
sequence of open-loop policies that can approach the lower
bound computed by (34) arbitrarily closely, thus proving that
this bound is tight. These policies are periodic switching strate-
gies using a schedule obtained from the optimal parameters
pij . Assuming no switching times or costs, their performance
approaches the bound as the length of the switching cycle
decreases toward 0.

Let P = [pij ]1≤i≤N,1≤j≤M be the matrix of optimal
parameters obtained in the solution of (34). We assume here
that constraints (1) and (3) are enforced, which is the most
general case for the discussion in this section. Hence P verifies

0 ≤ pij ≤ 1, i = 1, . . . , N, j = 1, . . . ,M,
N∑
i=1

pij ≤ 1, j = 1, . . . ,M, and
M∑
j=1

pij ≤ 1, i = 1, . . . , N.

A doubly substochastic matrix of dimension n is an n × n
matrix A = [aij ]1≤i,j≤n which satisfies

0 ≤ aij ≤ 1, i, j = 1, . . . , n,
n∑
i=1

aij ≤ 1, j = 1, . . . , n, and
n∑
j=1

aij ≤ 1, i = 1, . . . , n.

If M = N , P is therefore a doubly substochastic matrix. Else
if M < N (resp. N < M ) we can add N − M columns
of zeros (resp. M − N rows of zeros) to P to obtain a
doubly substochastic matrix. In any case, we call the resulting
doubly substochastic matrix P̃ = [p̃ij ]. If rows are added, this
is equivalent to the initial problem with additional “dummy
systems”. If columns are added, they correspond to using
“dummy sensors”. Dummy systems (i.e., for i > N ) are not
included in the objective function (the corresponding Ti is 0),
and a dummy sensor (i.e., for j > M ) is associated formally
to the matrices V −1

ij = 0 for all i, in effect producing no
measurement. In the following we assume that P̃ is an N×N
doubly substochastic matrix, but the discussion in the M ×M
case is identical. Doubly substochastic matrices have been
intensively studied, and the material used in the following can
be found in the book of Marshall and Olkin [31]. In particular,
we have the following corollary of a classical theorem of
Birkhoff [28], which says that a doubly stochastic matrix is a
convex combination of permutation matrices.

Theorem 8 ( [32]): The set of N×N doubly substochastic
matrices is the convex hull of the set P0 of N ×N matrices
which have a most one unit in each row and each column, and
all other entries are zero.

Hence, for the doubly substochastic matrix P̃ , there exists
a set of positive numbers φk and matrices Pk ∈ P0 such that

P̃ =

K∑
k=1

φkPk, with
K∑
k=1

φk = 1, for some integer K. (38)

One way of computing this decomposition is to first extend P̃

to the 2N × 2N doubly stochastic matrix

P̂ =

[
P̃ I −Dr

I −Dc P̃T

]
,

where r1, . . . , rN and c1, . . . , cN are the row sums and
column sums of P̃ , and Dr = diag(r1, . . . , rN ), Dc =
diag(c1, . . . , cN ). Then there is an algorithm that runs in time
O(N4.5) [31], [33] and provides the decomposition

P̂ =

K∑
k=1

φkP̂k,

with K ≤ (2N − 1)2 + 1 and where the P̂k’s are permutation
matrices of size 2N × 2N . The decomposition (38) is finally
obtained by deleting the last N rows and columns of P̂k to
obtain the matrices Pk, k = 1, . . . ,K.

Note that any matrix A = [aij ]i,j ∈ P0 represents a valid
sensor/system assignment (for the problem with additional
dummy systems or sensors), where sensor j is measuring
system i if and only if aij = 1. With the decomposition
(38), we now consider a family of periodic switching policies
parametrized by a positive number ε representing a time inter-
val over which the switching schedule is executed completely.
For a given value of ε, the policy is defined as follows:

1) At time t = lε, l ∈ N, associate sensor j to system i
as specified by the matrix P1 of the representation (38).
Run the corresponding continuous-time Kalman filters,
keeping this sensor/system association for a duration
φ1ε.

2) At time t = (l+φ1)ε, switch to the assignment specified
by P2. Run the corresponding continuous time Kalman
filters until t = (l + φ1 + φ2)ε.

3) Repeat the switching procedure, switching to matrix
Pi+1 at time t = l+φ1 + · · ·+φi, for i = 1, . . . ,K−1.

4) At time t = (l + φ1 + · · · + φK)ε = (l + 1)ε, start the
switching sequence again at step 1 with P1 and repeat
the steps above.

It is easy to see that the matrices Pi, i = 1, . . . ,K never
specify that a “dummy sensor” should execute a measurement
or that a “dummy system” should be measured, since from the
decomposition (38) this would correspond to nonzero entries
in the columns or rows added to P to form P̃ .

2) Performance of the Periodic Switching Policies: Let
us fix ε > 0 in the definition of the switching policy, and
consider now, for this policy, the evolution of the covariance
matrix Σεi(t) for the estimation error on the state of system i.
The superscript indicates the dependence of the policy on the
period ε. First we have

Lemma 9: For all i ∈ {1, . . . , N}, the estimation error
covariance Σεi(t) converges as t → ∞ to a periodic function
Σ̄εi(t) of period ε.

Proof: Fix i ∈ {1, . . . , N}. Let σi(t) ∈ {0, 1, . . . , N} be
the function specifying which sensor is observing system i at
time t under the switching policy. By convention σi(t) = 0
means that no sensor is scheduled to observe system i, and
σi(t) = j means that sensor j measures system i. Note from
the remark following the description of the switching policies
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that in fact we have σi(t) ∈ {0, . . . ,M}, i.e., the policy
never schedules measurements by dummy sensors. Similarly,
if instead we were considering the situation M > N and
P̃ an M × M matrix, then we would have σi(t) = 0 for
i ∈ {N + 1, . . . ,M} and all t. Note also that σi(t) is a
piecewise constant, ε-periodic function. The switching times
of σi(t) are t = (l+φ1 + · · ·+φk−1)ε, for k = 1, . . . ,K and
l ∈ N.

The covariance matrix Σεi(t) obeys the following periodic
Riccati differential equation (PRE):

Σ̇εi(t) = AiΣ
ε
i(t) + Σεi(t)A

T
i +Wi

− Σεi(t)(C
ε
i (t))

TCεi (t)Σ
ε
i(t) (39)

Σεi(t) = Σi,0,

where
Cεi (t) := V

−1/2
iσi(t)

Ciσi(t) (40)

is a piecewise constant, ε-periodic matrix valued function, and
we use the convention V −1

ij = Cij = 0 when j = 0. We
now show that (Ai, C

ε
i (·)) is detectable. Let j1, . . . , jK be the

successive values taken by the function σi(t) over the period ε.
From the definition of detectability for linear periodic systems
and it modal characterization [34, p.130], we immediately
deduce that the pair (Ai, C

ε
i (·)) is not detectable if and only

if there exists an eigenpair (λ, x) for Ai, with Re(λ) ≥ 0,
x 6= 0, such that

Aix = λx, and Cεi (t)e
Aitx = eλtCεi (t)x = 0, ∀t ∈ [0, ε],

hence,

Cij1x = . . . = CijKx = 0. (41)

Let us denote by pk,ij the (i, j)th element of the matrix Pk
in the decomposition (38). We have pk,ij = 1{j=jk} with
the above definition of jk, including the case jk = 0 (no
measurement), which gives pk,ij = 0 for all j ∈ {1, . . . , N}.
Then we can write

K∑
k=1

φkC
T
ijk
V −1
ijk
Cijk =

K∑
k=1

φk

 N∑
j=1

pk,ijC
T
ijV
−1
ij Cij


=

N∑
j=1

(
K∑
k=1

φkpk,ij

)
CTijV

−1
ij Cij =

N∑
j=1

p̃ijC
T
ijV
−1
ij Cij

=

M∑
j=1

pijC
T
ijV
−1
ij Cij = ĈTi Ĉi, (42)

where the next-to-last equality uses the fact that p̃ij = pij
for j ≤ M and p̃ij = 0 for j ≥ M + 1, and Ĉi was
defined in (33). Note that we now consider this definition of
Ĉi for the optimal parameters pij provided by the solution of
(34). Then (41) and (42) imply ‖Ĉix‖2 = 0, so Ĉix = 0,
i.e., (Ai, Ĉi) is not detectable. But the parameters pij being
optimal for the program (34), this would imply that this
program is not feasible [29, p.68], a contradiction with our
discussion following (33). So (Ai, C

ε
i (·)) must be detectable.

This result, together with our assumption 1 and the corollary
to Theorem 3 in [35, p. 95], yields

lim
t→∞

(
Σεi(t)− Σ̄εi(t)

)
= 0,

where Σ̄εi(t) is the strong solution of the PRE, which is ε-
periodic.

Next, denote by Σ̃i(t) the solution to the following Riccati
differential equation (RDE)

Σ̇i = AiΣi + ΣiA
T
i +Wi − Σi

 M∑
j=1

pijC
T
ijV
−1
ij Cij

Σi,

(43)
Σi(0) = Σi,0.

Assumptions 2 and 3, together with our discussion of the
implied detectability of the pair (A, Ĉi) (see (42)), guarantee
that Σ̃i(t) converges to a positive definite limit denoted Σ∗i .
Moreover, Σ∗i is stabilizing and is the unique positive definite
solution to the algebraic Riccati equation (ARE):

AiΣi+ΣiA
T
i +Wi−Σi

 M∑
j=1

pijC
T
ijV
−1
ij Cij

Σi = 0. (44)

The next lemma says that the periodic function Σ̄εi(t)
oscillates in a neighborhood of Σ∗i .

Lemma 10: For all t ∈ R+, we have Σ̄εi(t)−Σ∗i = O(ε) as
ε→ 0.

Proof: The function t→ Σ̄εi(t) of lemma 9 is the strong
periodic solution of the PRE (39). It is ε-periodic and positive
semidefinite. From Radon’s lemma [29, p.90], which gives a
representation of the solution to a Riccati differential equation
as the ratio of solutions to a linear ODE, we also know that Σ̄εi
is C∞ on each interval where σi(t) is constant, where σi(t)
is the switching signal defined in the proof of Lemma 9.

Let Σ̂εi be the average of t→ Σ̄εi(t):

Σ̂εi =
1

ε

∫ ε

0

Σ̄εi(t)dt,

and note that Σ̂εi is positive semidefinite. From the preceding
remarks, it is easy to deduce that we have Σ̄εi(t)− Σ̂εi = O(ε)
for all t. Then, averaging the PRE (39) over the interval [0, ε],
we obtain

AiΣ̂
ε
i + Σ̂εiA

T +Wi −
1

ε

∫ ε

0

Σ̄εi(t)(C
ε
i (t))

TCεi (t)Σ̄
ε
i(t)dt

=
1

ε
(Σ̄εi(ε)− Σ̄εi(0)) = 0,

where Cεi (t) was defined in (40). Expanding this equation in
powers of ε, we get

AiΣ̂
ε
i + Σ̂εiA

T +Wi

− Σ̂εi

(
1

ε

∫ ε

0

(Cεi (t))
TCεi (t)dt

)
Σ̂εi +R(ε) = 0,
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where R(ε) = O(ε). Let jk := σi(t) for t ∈ [(l + φ1 + . . .+
φk−1)ε, (l+φ1 + . . .+φk)ε]. We can then rewrite, using (42),

1

ε

∫ ε

0

(Cεi (t))
TCεi (t)dt =

K∑
k=1

φkC
T
ijk
V −1
ijk
Cijk

=

M∑
j=1

pijC
T
ijV
−1
ij Cij .

So we obtain

AiΣ̂
ε
i + Σ̂εiA

T + (Wi +R(ε))

− Σ̂εi

 M∑
j=1

pijC
T
ijV
−1
ij Cij

 Σ̂εi = 0.

Note moreover that for ε sufficiently small, Σ̂εi is the unique
positive semidefinite stabilizing solution of this ARE, using the
fact that controllability of (Ai,W

1/2
i ) is an open condition.

Now comparing this ARE to the ARE (44), and since the
stabilizing solution of an ARE is a real analytic function of
the parameters [36], we deduce that Σ̂εi −Σ∗i = O(ε), and the
lemma.

Theorem 11: Let Zε denote the performance of the periodic
switching policy with period ε. Then Zε − Z∗ = O(ε) as
ε → 0, where Z∗ is the performance bound (34). Hence
the performance of the switching policy approaches the lower
bound arbitrarily closely as the period tends to 0.

Proof: We have

Zε = lim
T→∞

1

T

∫ T

0

N∑
i=1

Tr(Ti Σεi(t)) +

M∑
j=1

κijπ
ε
ij(t)

 dt,

where πε is the sensor/system assignment of the switching
policy. First by using a transformation similar to (42) and using
the convention κij = 0 for j ∈ {0} ∪ {M + 1, . . . , N} (no
measurement or measurement by a dummy sensor), we have
for system i

1

T

∫ T

0

M∑
j=1

κijπ
ε
ij(t)dt =

1

T

bTε c−1∑
n=0

∫ (n+1)ε

nε

M∑
j=1

κijπ
ε
ij(t)dt

+
1

T

∫ T

bTε cε

M∑
j=1

κijπ
ε
ij(t)dt

=
1

T

⌊
T

ε

⌋ K∑
k=1

κijk(φkε) +
1

T

∫ T

bTε cε

M∑
j=1

κijπ
ε
ij(t)dt

=

⌊
T

ε

⌋
ε

T

M∑
j=1

κijpij +
1

T

∫ T

bTε cε

M∑
j=1

κijπ
ε
ij(t)dt, (45)

where the jk’s were defined in the proof of Lemma 9. Hence

lim
T→∞

1

T

∫ T

0

N∑
i=1

M∑
j=1

κijπ
ε
ij(t)dt =

N∑
i=1

M∑
j=1

κijpij .

Next, from Lemmas 9 and 10, it follows readily that
limt→∞Σεi(t) − Σ∗i = O(ε). Since Σ∗i � 0, we can define
Q∗i = (Σ∗i )

−1. Then under our assumptions Q∗i is a maximal

(for the partial order on Sn+) solution of the quadratic matrix
inequality

QiAi +ATi Qi +QiWiQi −
M∑
j=1

pijC
T
ijV
−1
ij Cij � 0, (46)

see e.g. [37, cor. 13.13]. Hence for the pij obtained from
the computation of the lower bound (34), these matrices Q∗i
minimize the function

∑N
i=1 Tr (TiQ

−1
i ) over the matrices

Qi satisfying (46). Thus we obtain a minimizer for (30),
with constraints (32). In conclusion, the covariance matrices
resulting from the switching policies approach within O(ε)
as ε → 0 the covariance matrices that are obtained from the
lower bound on the achievable cost. The theorem follows, by
bounding above the upper limit of a sum by the sum of the
upper limits to get Z∗ ≤ Zε ≤ Z∗ +O(ε).

Remark 12: Since the bound computed in (34) is tight, and
since it is easy to see that the performance bound of section III
is at least as good as the bound (34) for the simplified problem
of that section, we conclude that the two bounds coincide
and that section III gives an alternative way of computing
the solution of (34) in the case of identical sensors and one-
dimensional systems. Using the closed form expression for the
dual function (20), we only need in that case to optimize over
the single Lagrange multiplier λ, independently of the number
N of systems, instead of solving the LMI (34), whose number
of variables grows with N .

3) Transient Behavior of the Switching Policies: Before
concluding, we take a look at the transient behavior of the
switching policies. We show that over a finite time interval,
Σεi(t) remains close to Σ̃i(t), solution of the “averaged” RDE
(43). Together with the previous result of Lemma 9 on the
asymptotic behavior, we see then that Σεi(t) and Σ̃i(t) remain
close for all t. For a matrix A, we denote by ‖A‖∞ the
maximal absolute value of the entries of A.

Lemma 13: For all 0 ≤ T0 <∞, there exist constants ε0 >
0 and M0 > 0 such that for all 0 < ε ≤ ε0 and for all
t ∈ [0, T0], we have ‖Σεi(t)− Σ̃i(t)‖∞ ≤M0ε.

Proof: As in the proof of lemma 10, by Radon’s lemma
we know that Σεi is C∞ on each interval where σi(t) is
constant. We have then, over the interval t ∈ [lε, (l + φ1)ε],
for l ∈ N:

Σεi((l + φ1)ε) =Σεi(lε) + φ1ε[AiΣ
ε
i(lε) + Σεi(lε)A

T
i +Wi

− Σεi(lε)C
T
ij1V

−1
ij1
Cij1Σεi(lε)] +O(ε2),

(47)

where as before we denote jk := σi(t) for t ∈ [(l + φ1 +
. . .+ φk−1)ε, (l + φ1 + . . .+ φk)ε]. Now over the period t ∈
[(l + φ1)ε, (l + φ1 + φ2)ε], we have:

Σεi((l + φ1 + φ2)ε) =

Σεi((l + φ1)ε) + φ2ε[AiΣ
ε
i((l + φ1)ε) + Σεi((l + φ1)ε)ATi

+Wi − Σεi((l + φ1)ε)CTij2V
−1
ij2
Cij2Σεi((l + φ1)ε)] +O(ε2).

Using (47), we deduce that

Σεi((l + φ1 + φ2)ε) =

Σεi(lε) + ε[φ1 + φ2]{AiΣεi(lε) + Σεi(lε)A
T
i +Wi}

− εΣεi(lε)(φ1C
T
ij1V

−1
ij1
Cij1 + φ2C

T
ij2V

−1
ij2
Cij2)Σεi(lε) +O(ε2).
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By immediate induction, and since φ1 + · · · + φK = 1, we
then have

Σεi((l + 1)ε) = Σεi(lε) + ε

{
AiΣ

ε
i(lε) + Σεi(lε)A

T
i +Wi

− Σεi(lε)

(
K∑
k=1

φkC
T
ijk
V −1
ijk
Cijk

)
Σεi(lε)

}
+O(ε2).

Hence by (42), Σεi verifies the relation

Σεi((l + 1)ε) = Σεi(lε) + ε

{
AiΣ

ε
i(lε) + Σεi(lε)A

T
i +Wi

− Σεi(lε)

 M∑
j=1

pijC
T
ijV
−1
ij Cij

Σεi(lε)

}
+O(ε2). (48)

But notice now that the approximation (48) is also true by
definition for Σ̃i(t) over the interval t ∈ [lε, (l + 1)ε]. Next,
consider the following identity for Q,X and X̃ symmetric
matrices:

AX̃ + X̃AT − X̃QX̃ − (AX +XAT −XQX)

= (A− X̃Q)(X̃ −X) + (X̃ −X)(A− X̃Q)T

+ (X̃ −X)Q(X̃ −X).

Letting Q =
∑M
j=1 pijC

T
ijV
−1
ij Cij , ∆ε

i(l) = Σ̃i(lε) − Σεi(lε),
we obtain from this identity

∆ε
i(l + 1) = ∆ε

i(l) + ε{(A− Σ̃i(lε)Q)∆ε
i(l)

+ ∆ε
i(l)(A− Σ̃i(lε)Q)T + ∆ε

i(l)Q∆ε
i(l)}+O(ε2).

Note that ∆ε
i(0) = 0 and Σ̃i(t) is bounded, so by immediate

induction we have

∆ε
i(l) =

l∑
k=1

Rk(ε), where Rk(ε) = O(ε2) for all k.

Fix T0 ≥ 0. We have then

Σ̃i

(⌈
T0

ε

⌉
ε

)
− Σεi

(⌈
T0

ε

⌉
ε

)
= ∆ε

i

(⌈
T0

ε

⌉)
= O(ε).

This means that there exist constants ε0, M0 > 0 such that∥∥∥∥Σ̃i

(⌈
T0

ε

⌉
ε

)
− Σεi

(⌈
T0

ε

⌉
ε

)∥∥∥∥
∞
≤M0ε,

for all 0 < ε < ε0. It is easy to see from the argument above
that a similar approximation is in fact valid for all t up to time⌈
T0

ε

⌉
ε.

4) Numerical Simulation: On Fig. 1, we compare the
covariance trajectories for Whittle’s index policy, the periodic
switching policy and the greedy policy (measuring the system
with highest current mean square error on the estimate) for a
simple problem with one sensor switching between two scalar
systems. Significant improvements over the greedy policy can
be obtained in general by using the periodic switching policies
or the Whittle policy. An important computational advantage
of the Whittle policy for large-scale problems with a limited
number of identical sensors is that by using the closed form
solution of the indices provided in section III-B3, it requires
only ordering N numbers (which is the same computational
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Fig. 1. Comparison of the variance trajectories under the periodic switching
policy, Whittle’s index policy, and the greedy policy. For the last two policies,
we assumed that instantaneous switching was possible. Also shown are
the trajectories of Σ̃i(t), solution of the RDE (43) (curves averaging the
oscillations). Here a single sensor switches between two scalar systems. The
period ε was chosen to be 0.05. The system parameters are A1 = 0.1, A2 =
2, Ci = Wi = Vi = 1, κi = 0. The dashed lines are the steady-state
values that could be achieved with two identical sensors, each measuring one
system. The performance of the Whittle policy is 7.99, which is optimal (i.e.,
matches the bound). The performance of the greedy policy is 9.2. Note that the
greedy policy makes the variances converge, while the Whittle policy makes
the Whittle indices (not shown) converge. The switching policy spends 22.9%
of its time measuring system 1 and 77.1% of its time measuring system 2.

cost as for the greedy policy), whereas designing the open-
loop switching policy requires computing the solution of the
program (34). On Fig. 2, we plot the performance of the
periodic switching policy for the same example, as the period
ε increases. It is interesting to note the graceful performance
degradation, which seems to extend the intuition of Theorem
11 to relatively large period lengths.

Finally, we show an example of simulations for a larger-
scale problem. We consider the scheduling of 30 sensors mea-
suring the state of a single 20-dimensional system. The prob-
lem parameters (matrices and costs) are randomly generated.
This results in an LMI with 450 variables, which can be solved
in a few seconds on a standard laptop using CVXOPT [38].
The subsequent Birkhoff-von Neumann decomposition only
takes a few milliseconds. To illustrate a quick extension of the
basic LMI (34), we added the linear constraint

∑30
j=1 p1j ≤ ρ

with ρ ∈ (0, 1]. This constraint models the requirement that
only a fraction ρ of each period can be spent measuring
the system, due for example to the controller implementation
platform executing other tasks. We call the time where no
sensor measures the system the “passive mode”, and plot the
performance bound provided by the LMI as a function of 1−ρ
on Fig. 3. The cost blows up as ρ approaches 0 because the
system turned out to be unstable in this example.
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Fig. 2. For the system of Fig. 1, we compute the cost of the periodic policy
as the duration ε of each schedule increases, from 0.02 to 2.5.

Fig. 3. Computation of the performance bound for a random problem with
a 20-dimensional plant and 30 sensors, as a function of the time in each
scheduling period where no measurement can be made (passive mode).

V. CONCLUSION

In this paper, we have considered an attention-control prob-
lem in continuous time, which consists of scheduling sen-
sor/target assignments and running the corresponding Kalman
filters. We proved that the bound obtained from a relaxation
inspired by the RBP is tight, assuming we allow the sensors to
switch arbitrarily fast between the targets. An open question
is to characterize the performance of the restless bandit index
policy derived in the scalar case. It was found experimentally
that the performance of this policy seems to match the bound,
but we do not have a proof of this fact. Obtaining optimal
policies in a feedback form for the multidimensional case
would also be of interest. For practical applications, the main
limitation of our model concerns the absence of switching
costs and delays. Still, the optimal solution obtained in the
absence of such costs should provide insight into the derivation
of heuristics for more complex models. Additionally there

are numerous sensor scheduling applications, such as for
telemetry-data aerospace systems or radar waveform selection
systems, where the switching costs are not too important.
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