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Distributed Algorithms
for Stochastic Source Seeking
With Mobile Robot Networks
Autonomous robot networks are an effective tool for monitoring large-scale environmen-
tal fields. This paper proposes distributed control strategies for localizing the source of a
noisy signal, which could represent a physical quantity of interest such as magnetic force,
heat, radio signal, or chemical concentration. We develop algorithms specific to two sce-
narios: one in which the sensors have a precise model of the signal formation process
and one in which a signal model is not available. In the model-free scenario, a team of
sensors is used to follow a stochastic gradient of the signal field. Our approach is distrib-
uted, robust to deformations in the group geometry, does not necessitate global localiza-
tion, and is guaranteed to lead the sensors to a neighborhood of a local maximum of the
field. In the model-based scenario, the sensors follow a stochastic gradient of the mutual
information (MI) between their expected measurements and the expected source location
in a distributed manner. The performance is demonstrated in simulation using a robot
sensor network to localize the source of a wireless radio signal.
[DOI: 10.1115/1.4027892]

1 Introduction

The ability to detect the source of a signal is a fundamental
problem in nature. At a microscopic level, some bacteria are able
to find chemical, light, and magnetic sources [1,2]. At a macro-
scopic level, similar behavior can be observed in predators who
seek a food source using their sense of smell. Reproducing this
behavior in mobile robots can be used to perform complex mis-
sions such as environmental monitoring [3,4], intelligence, sur-
veillance, and reconnaissance [5], and search and rescue
operations [6].

This paper discusses how to control a team of mobile robotic
sensors to locate the source of a noisy signal, which represents a
physical quantity such as magnetic force, heat, radio signal, or
chemical concentration. We distinguish between two cases:
model-free and model-based. The first scenario supposes that the
sensors receive measurements without knowledge of the signal
formation process. This is relevant when the signal is difficult to
model or the environment is unknown a priori. Online modeling
of the signal requires time and computational resources and might
not be feasible, especially on small platforms and in time-critical
missions. In contrast, the second scenario supposes the sensors
have an accurate signal model which can be exploited to localize
the source, potentially faster and with better accuracy.

1.1 Related Work. Our model-free source-seeking approach
consists in climbing the gradient of the signal field by using a sto-
chastic approximation (SA) technique to deal with the underlying
noise. Our strategy is robust to deformations in the geometry of
the sensor network and can be applied to sensors with limited
computational resources and no global localization capabilities.
Recent model-free source-seeking work which uses a sensor for-
mation to ascend the gradient of the signal field includes Refs. [3]
and [7–9]. €Ogren et al. [3] use artificial potentials to decouple the
formation stabilization from the gradient ascent. Centralized least
squares are used to estimate the signal gradient. A distributed
approach for exploring a scalar field using a cooperative Kalman
filter is presented in Ref. [10]. The authors design control laws to

achieve a formation, which minimizes the estimation error. Simi-
larly, in Ref. [9], a circular formation is used to estimate the signal
gradient in a distributed manner based on a Newton–Raphson con-
sensus method. A drawback of these works is the assumption that
the sensor formation is maintained perfectly throughout the execu-
tion of the algorithm which is hardly possible in a real environ-
ment. In this paper, imperfect formations are explicitly handled by
recomputing the correct weights necessary to combine the sensor
observations at every measurement location. Choi et al. [11,12]
present a general distributed learning and control approach for
sensor networks and apply it to source seeking. The sensed signal
is modeled by a network of radial basis functions (RBFs) and re-
cursive least squares are used to obtain the model parameters.
Instead of a sensor network, a single vehicle may travel to several
sensing locations in order to collect the same measurements
[13–17]. While costly maneuvers are required to climb the gradi-
ent effectively, in our previous work [18], we discussed the pa-
rameter choices which enable good performance.

In the model-based scenario, we choose the next configuration
for the sensing team by maximizing the MI between the source
location estimate and the expected measurements. Even if all pose
and measurement information are available at a central location,
evaluating the MI utility function is computationally demanding.
Charrow et al. [19] focus on approximating MI when the sensed
signal is Gaussian and the sensors use a particle filter to estimate
the source location. Hoffman and Tomlin [20] compute the expec-
tation over the measurements only for pairs of sensors, thus
decreasing the dimension of the required integration. Instead of
MI, in this work, we approximate the MI gradient. A related work
which uses the MI gradient is Ref. [21], in which the computa-
tional complexity is reduced by integrating over binary sensor
measurements and only for sensors whose fields of view overlap.
A fully distributed approach based on belief consensus is pro-
posed in Ref. [22]. This paper is also related to consensus control,
which seeks agreement in the states of multi-agent dynamical sys-
tems. Recent results [23,24] address switching topologies, nontri-
vial delays, and asynchronous estimation but with the main
difference that the sensors agree on their own states, while in this
work they need to agree on the exogenous state of the source.

1.2 Contributions. We develop a distributed approach for
stochastic source seeking using a mobile sensor network, which
does not rely on a model of the signal field or global localization.
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Our method uses a finite-difference (FD) scheme to estimate the
signal gradient correctly, even when the sensor formation is not
maintained well. In the model-based case, we show that a SA to
the MI gradient using only a few predicted signal measurements is
enough to provide good control performance. This is in contrast
with existing work which insists on improving the quality of the
gradient estimate as much as possible.

1.3 Paper Organization. In Sec. 2, we describe the consid-
ered source-seeking scenarios precisely. Our model-free and
model-based approaches are discussed in detail in Secs. 3 and 4,
respectively, assuming all-to-all communication among the sen-
sors. Distributed versions are presented and analyzed in Sec. 5.
Finally, in Sec. 6, we present an application to wireless radio
source localization and compare the performance of the two
methods.

2 Problem Formulation

Consider a team of n sensing robots with states
fx1;t;…; xn;tg � X ffi Rdx at time t. The states typically comprise
pose and velocity information but might include other operational
parameters too. At a high-level planning stage, we suppose
that the vehicles have discrete single-integrator dynamics
xi,tþ1¼ xi,tþ ui,t, where ui;t 2 U is the control input to sensor i.
The task is to localize a static signal source, whose unknown state
is y 2 Y ffi Rdy . The state captures the source position and other
observable properties of interest. At time t, each sensor i has
access to a noisy measurement zi;t 2 Z ffi Rdz of the signal gener-
ated by y

zi;t ¼ hðxi;t; yÞ þ vi;t (1)

where vi,t is the measurement noise, whose values are independent
at any pair of times and among sensors. The noise depends on the
states of the sensor and the source, i.e., vi,t(xi,t, y), but to simplify
notation we do not make it explicit. We assume that the noise is
zero mean and has a finite second moment, i.e., Evi;t ¼ 0; 8i; t; xi;t

and trðE½vi;tv
T
i;t�Þ <1. In the reminder, we use the notation

xt :¼ xT
1;t;…; xT

n;t

� �T
; ut :¼ uT

1;t;…; uT
n;t

� �T
; zt :¼ zT

1;t; …; zT
n;t

� �T
;

and vt :¼ vT
1;t;…; vT

n;t

� �T
:

In the model-free scenario, the sensors simply receive measure-
ments without knowing the signal model h(�, �). We suppose that
the team adopts some arbitrary formation, with center of mass
mt :¼

Pn
i¼1 xi;t=n at time t, which can be enforced using potential

fields [3] or convex optimization [25]. The sensors use the cent-
roid mt as the estimate of the source state y at time t and try to
lead it toward the true source location based on the received meas-
urements. Let f : X ! Y be a known transformation, which maps
the team centroid to a source estimate. For example, if the robot
state space captures both position and orientation, e.g.,
X ¼ SEð2Þ, but we are interested only in position estimates for
the source, e.g., Y ¼ R2, then f will be the projection which
extracts the position components from the centroid mt 2 X . We
consider the following problem.

Problem 2.1 (Model-Free Source Seeking). Assume that the
measurement signal in Eq. (1) is scalar2 and its expectation is
maximized at the true state y of the source

f�1ðyÞ 2 arg max
x2X

hðx; yÞ (2)

Generate a sequence of control inputs u0, u1,… for the team of
sensors in order to drive its centroid mt toward a maximum of the
signal field h(�, y).

In the model-based case, the sensors have accurate knowledge
of h(�, �) which can be exploited to maximize the information that
future measurements provide about the signal source. We choose
MI as a measure of informativeness and formulate the following
problem.

Problem 2.2 (Model-Based Source Seeking). Given the sensor
poses xt�1 2 Xn and a prior distribution of the source state y at
time t – 1, choose the control input ut 2 Un, which optimizes the
following:

max
u1;t ;…;un;t

Iðy; ztjxtÞ

s:t: xi;t ¼ xi;t�1 þ ui;t; i ¼ 1;…; n

zi;t ¼ hðxi;t; yÞ þ vi;t; i ¼ 1;…; n

(3)

We resort to SA methods in both scenarios and emphasize their
usefulness in simplifying the algorithms, while providing theoretic
guarantees about the performance.

3 Model-Free Source Seeking

3.1 Model-Free Algorithm. Our model-free approach is to
design an iterative optimization scheme, which causes the centroid
mt of the robot formation to ascend the gradient g(x, y):¼rxh(x, y)
of the measurement signal. The gradient ascent leads mt to a (often
local) maximum of the signal field, which is appropriate in view of
Assumption (2). In detail, the desired dynamics for the centroid are

mtþ1 ¼ mt þ ctgðmt; yÞ (4)

A complication arises because the sensors do not have access to
g(�, y) and can only measure a noisy version of h(�, y) at their cur-
rent positions. Supposing noise-free measurements for now, the
sensors can approximate the signal gradient at the formation cent-
roid via a FD scheme

gðmt; yÞ ¼ rxhðmt; yÞ ¼ WðxtÞ

hðx1;t; yÞ

..

.

hðxn;t; yÞ

0
BB@

1
CCA� bt (5)

where WðxtÞ 2 Rdx�n is a matrix of FD weights, which depends
on the sensor states xt, and bt 2 Rdx captures the error in the
approximation. The most natural way to obtain the FD weights is
to require that the approximation is exact for a set of test functions
wi, i¼ 1,…, n, commonly polynomials, which can represent the
shape of g(�, y). In particular, the following relation needs to hold:

w1ðx1;tÞ � � � w1ðxn;tÞ

..

. ..
.

wnðx1;tÞ � � � wnðxn;tÞ

2
664

3
775WðxtÞT ¼

@

@x
w1ðmtÞ

..

.

@

@x
wnðmtÞ

2
666664

3
777775 (6)

where ð@=@xÞwiðxÞ is a row vector of partial derivatives. When
xi;t 2 R, the most common set of test functions are the monomials
wi(x)¼ xi�1, in which case (6) becomes a Vandermonde system.
The standard (monomial) FD approach is problematic when the
states xi,t are high-dimensional and not in a lattice configuration
because the system in Eq. (6) becomes ill-conditioned. These dif-
ficulties are alleviated by using RBFs wiðxÞ :¼ /ð x� xi;t

�� ��Þ as
test functions. In particular, using Gaussian RBFs, /ðdÞ
:¼ e�ðddÞ2 , with shape parameter d> 0, guarantees that Eq. (6) is
nonsingular [26]. Then, the FD weights obtained from Eq. (6) as a
function of xt are

2The assumption is made only to simplify the presentation of the gradient ascent
approach in the model-free case. The approach generalizes to signals of higher
dimension.
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WðxtÞ ¼ RðxtÞTUðxtÞ�T
(7)

where, for x 2 Xn, we let UijðxÞ :¼ e�d2 xj�xik k2

2 and

RðxÞ :¼

2d2e

�d2 x1 �
Xn

i¼1

xi=n

�����
�����

2

2 x1 �
Xn

i¼1

xi=n

 !T

..

.

2d2e

�d2 xn �
Xn

i¼1

xi=n

�����
�����

2

2 xn �
Xn

i¼1

xi=n

 !T

2
666666666666664

3
777777777777775

(8)

Since the measurements are noisy, sensor i can observe only zi,t

rather than h(xi,t, y). As a result, the gradient ascent (4) can be
implemented only approximately via g(mt, y)�W(xt)zt instead of
Eq. (5) and with the additional complication that the measurement
noise makes the iterates mt random. Our stochastic model-free
source-seeking algorithm is

mtþ1 ¼ mt þ ctWðxtÞzt (9)

The convergence of similar source-seeking schemes is often
studied in a deterministic framework [3] by assuming that the
noise can be neglected, which is difficult to justify. In Sec. 3.2, we
show that the center of mass mt, following the dynamics (9) with
appropriately chosen step-sizes ct, converges to a neighborhood of
a local maximum of h(�, y). Assuming all-to-all communication or
a centralized location, which receives all state and measurement
information from the sensors, the stochastic gradient ascent (9)
can be implemented as is. It requires that the sensors are localized
relative to one another, i.e., in the inertial frame of one sensor, but
not globally, in the world frame. Notably, it is also not important
to maintain a rigid sensor formation as the correct FD weights
necessary to combine the observations are recomputed at every
measurement location. Section 3.2 shows that the only require-
ment is that the sensor team is not contained in a subspace of Rdx

when measuring (e.g., at least three noncollinear sensors are
needed for dx¼ 2).

3.2 Convergence Analysis. To carry out the convergence
analysis of the stochastic gradient ascent in Eq. (9), we resort to
the theory of SAs [27,28]. It is sufficient to consider the following
SA algorithm:

mtþ1 ¼ mt þ ctðgðmtÞ þ bt þ DtÞ (10)

where bt is a bias term, Dt is a random zero-mean perturbation, ct

is a small step-size, and mt is a random sequence whose asymp-
totic behavior is of interest. The main result is that the iterates mt

in Eq. (10) asymptotically follow the integral curves of the ordi-
nary differential equation (ODE) _m ¼ gðmÞ. Since in our case
with a fixed source state y, g(m):¼rxh(m, y), the ODE method
(Ref. [28] Chap. 2 and Ref. [29]) shows that the iterates {mt}
almost surely (a.s.) converge to the set fxjrxhðx; yÞ ¼ 0g of criti-
cal points of h(�, y) under the following Assumptions:3

(A1) The map g is Lipschitz continuous;4

(A2) Step-sizes {ct} are positive scalars satisfying

X1
t¼0

ct ¼ 1 and
X1
t¼0

c2
t <1;

(A3) {Dt} is martingale difference sequence with respect to the
family of r-algebras F t :¼ rðm0;Ds; 0 	 s 	 tÞ, i.e., Dt

is measurable with respect to F t;E½ Dtk k� <1, and
E½Dtþ1jF t� ¼ 0 a.s. for all t
 0. Also, Dt is square inte-
grable with E½ Dtþ1k k2jF t� 	 Kð1þ mtk k2Þ a.s. for t
 0
and some constant K> 0;

(A4) {mt} is bounded, i.e., sup t mtk k <1 a.s.;
(A5) {bt} is bounded and bt! 0 a.s. as t!1.

The proposed source-seeking algorithm (9) can be converted to
the SA form (10) as follows:

mtþ1 ¼ mt þ ctWðxtÞzt ¼ mt þ ctWðxtÞ

hðx1;t; yÞ þ v1;t

..

.

hðxn;t; yÞ þ vn;t

0
BB@

1
CCA

¼ mt þ ct gðmt; yÞ þ bt þWðxtÞvtð Þ

where the second equality follows from Eq. (5). Assumption (A1)
ensures that _m ¼ gðm; yÞ has a unique solution for any initial con-
dition and any fixed source state y. Assumption (A2) can be satis-
fied by an appropriate choice of the step-size, e.g., ct¼ 1/(tþ 1).
The selection of proper step-sizes is an important practical issue
that is not emphasized in this paper but is discussed at length in
Refs. [18], [27], and [30]. We can satisfy (A4) by requiring that
the environment X of the sensors is bounded and if necessary use
a projected version of the gradient ascent [28, Chap. 5.4]. This
also ensures that the FD weights are bounded and in turn (A3) is
satisfied

E Dtk k2

� �2 	 E Dtk k2
2¼ E Dtk k2

2jF t�1

h i
¼ E WðxtÞvtk k2

2

h i
	 WðxtÞk k2

2E vtk k2
2¼ WðxtÞk k2

2

Xn

i¼1

trðE½vi;tv
T
i;t�Þ <1

E DtjF t�1½ � ¼ E½WðxtÞvt� ¼ WðxtÞEvt ¼ 0

since the measurement noise in Eq. (1) is uncorrelated in time and
has zero mean and a finite second moment. Note that the error
term in Eq. (5) violates (A5) because it does not converge to 0.
However, if we ensure that the sensor formation is not contained
in a subspace of Rdx , then bt remains bounded by some e0> 0,
i.e., supt btk k 	 e0. Then, the argument in Ref. [28, Chap. 5, Theo-
rem 6] shows that the iterates mt converge a.s. to a small neighbor-
hood of a local maximum, whose size depends on e0. The result is
summarized below:

THEOREM 1. Suppose that the gradient g(x, y)¼rxh(x, y) of the
measurement signal is Lipschitz continuous3 in x, the step-sizes ct

in Eq. (9) satisfy (A2), the sensor state space X is bounded,
and the sensor formation is not contained in a subspace of Rdx at
the measurement locations. Then, algorithm (9) converges to a
small neighborhood around a local maximum of the signal field
h(�, y).

4 Model-Based Source Seeking

4.1 Model-Based Algorithm. In this section, we address
Problem 2.2 assuming all-to-all communication. The sensors can
follow the gradient of the cost function in Eq. (3) to reach a local
maximum:

xtþ1 ¼ xt þ ctrxIðy; ztjxÞjx¼xt
(11)

where ct is the step-size at time t. Let pðzjy; xÞ denote the probabi-
lity density function (pdf) of the measurement signal in Eq. (1).

3While Assumptions (A1)–(A5) are sufficient to prove the convergence in our
application, they are by no means the weakest possible. If necessary some can be
relaxed using the results in stochastic approximation [27,28].

4Given two metric spaces ðX ; dxÞ and ðG; dgÞ, a function g : X ! G is Lipschitz
continuous if there exists a real constant 0 	 L<1 such that:
dgðgðx1Þ; gðx2ÞÞ 	 Ldxðx1; x2Þ; 8x1; x2 2 X .
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Let pt(y) be the pdf used by the sensors at time t to estimate the
state of the source, which is assumed independent of xt. The fol-
lowing theorem gives an expression for the MI gradient provided
that pðzjy; xÞ is differentiable with respect to the sensor
configurations.

THEOREM 2 (Ref. [31]). Let random vectors Y and Z be jointly
distributed with pdf pðy; zjxÞ, which is differentiable with respect
to the parameter x 2 X . Suppose that the support of pðy; zjxÞ does
not depend on x. Then, the gradient with respect to x of the MI
between Y and Z is

rxIðY; ZjxÞ ¼
ð ð
ðrxpðy; zjxÞÞ log

pðzjy; xÞ
pðzjxÞ dydz

where pðzjy; xÞ and pðzjxÞ are the conditional and the marginal
pdfs of Z, respectively.

Obtaining the MI gradient is computationally very demanding
for two reasons. First, an approximate representation is needed for
the continuous pdfs in the integral. Second, at time t, the integra-
tion is over the collection of all sensor measurements

zt ¼ zT
1;t;…; zT

n;t

� �T
, which can have a very high dimension in

practice. As mentioned in Sec. 1, most existing work has focused
on accurate approximations. However, Theorem 2 allows us to
make a key observation

rxIðy; ztjxtÞ ¼ E½ptðzt; xtÞ jxt� ¼
ð

ptðzt; xtÞptðzzjxtÞdzt

where

ptðz; xÞ :¼
ðrxpðzjy; xÞ

ptðzjxÞ
ptðyÞ log

pðzjy; xÞ
ptðzjxÞ

dy

ptðzjxÞ :¼
ð

pðzjy; xÞptðyÞdy

(12)

where the independence between y and xt is used for the decompo-
sition: ptðy; zjxÞ ¼ pðzjy; xÞptðyÞ. Relying on the signal model, the
sensors can simulate realizations of the random variable zt, iid
with pdf ptðztjxtÞ. Instead of computing the integral in Eq. (12)
needed for the gradient ascent (11), we propose the following sto-
chastic algorithm:

xtþ1 ¼ xt þ ctptðzt; xtÞ (13)

It can be written in the SA form (10) as follows:

xtþ1 ¼ xt þ ctEzt
½ptðzt; xtÞjxt� þ ctDt

¼ xt þ ct rxIðy; ztjxtÞ þ Dtð Þ

where Dt :¼ ptðzt; xtÞ �E½ptðzt; xtÞjxt�. To evaluate the conver-
gence, we consider Assumptions (A1)–(A5) again. As before, sat-
isfaction of (A2) is achieved by a proper step-size choice, while
(A4) holds due to the bounded workspace X . Assumption (A5) is
satisfied because in this case the bias term is zero. To verify (A3),
note that Dt is measurable with respect to F t ¼ rðx0;Ds;
0 	 s 	 tÞ and for t
 1

E½DtjF t�1� ¼ E ptðzt; xtÞ �E½ptðzt; xtÞjxt�jF t�1½ �

¼ E½ptðzt; xtÞjF t�1� �E½ptðzt; xtÞjxt� ¼ 0

Finally, if pðzjy; xÞ and its gradientrxpðzjy; xÞ are sufficiently reg-
ular (e.g., the former is bounded away from zero and the latter is
Lipschitz continuous and bounded), the square integrability condi-
tion on Dt is satisfied.

This analysis demonstrates that even if a single zt sample is
used to approximate the MI gradient (instead of the integration in
Eq. (12)), the stochastic gradient ascent (13) will converge to a
local maximum of the MI between the source state and the future
sensor measurements.

4.2 Implementation Details. To implement the stochastic
gradient ascent in Eq. (13), the sensors need to propagate pt(y)
over time and sample from ptðztjxtÞ. We achieve the first require-
ment by a particle filter [32, Chap. 4], which approximates pt(y)

by a set of weighted samples fwm
t ; y

m
t g

Np

m¼1 as follows:

ptðyÞ �
PNp

m¼1 wm
t dðy� ym

t Þ, where d(�) is a Dirac delta function.
Using the particle set, we can write p and the measurement pdf as
follows:

ptðz; xÞ �
XNp

m¼1

wm
t

rxpðzjym
t ; xÞ

pðzjxÞ log
pðzjym

t ; xÞ
pðzjxÞ

ptðzjxÞ �
XNp

m¼1

wm
t pðzjym

t ; xÞ

where pðzjy; xÞ and its gradient can be decomposed further

pðzjy; xÞ ¼
Yn

j¼1

pðzjjy; xjÞ

@pðzjy; xÞ
@xk

¼ @pðzkjy; xkÞ
@xk

Y
j6¼k

pðzjjy; xjÞ

due to the independence of the observations in Eq. (1). In practice,
there is a trade-off between moving the sensors and spending time
approximating the gradient of the MI (12). The SA in Eq. (13)
uses a single sample from ptð�jxtÞ but if sampling is fast compared
to the time needed to relocate the sensors, more samples can be
used to get a better estimate of the gradient. We use Monte Carlo
integration, which proceeds as follows:

(1) Sample �mðlÞ from the discrete distribution w1
t ;…;w

Np

t .

(2) Sample �zðlÞ from the pdf pð�jy �mðlÞ
t ; xtÞ.

(3) Repeat steps (1) and (2) to obtain Nz samples f�zðlÞgNz

l¼1.

(4) Approximate: rxIðy; ztjxtÞ � 1
Nz

PNz

l¼1 ptð�zðlÞ; xtÞ.
Note that the advantage of improving the gradient estimate is not
clear and should not necessarily be prioritized over the sensor
motion. The SA techniques show that even an approximation with
a single sample is sufficient to make progress. In contrast, the
related approaches mentioned in the Introduction insist on
improving the quality of the gradient estimate as much as possi-
ble. Depending on the application, this can slow down the robot
motion and possibly make the algorithms impractical. Our more
flexible approach adds an extra degree of freedom by allowing a
trade-off between the gradient estimation quality and the motion
speed of the sensors.

5 Distributed Algorithms

In many scenarios, all-to-all communication is either infeasible
or prone to failures. In this section, we present distributed versions
of the model-free and the model-based algorithms. Since the
model-free algorithm should be applicable to light-weight plat-
forms with no global localization capabilities, the sensors use
noisy relative measurements of their neighbors’ locations to esti-
mate the collective formation state. In the model-based case, the
sensors may spread around the environment and we are forced to
assume that each agent is capable of estimating its own state xi,t.
We begin with preliminaries on distributed estimation.

5.1 Preliminaries on Distributed Estimation. Let the com-
munication network of the n sensors be represented by an undir-
ected graph G¼ ({1,…,n}, E). Suppose that the sensors need to
estimate an unknown static parameter h*� H, where H � Rdh is
a convex space. At discrete times k 2N, each sensor i receives a
random sequence of iid signals siðkÞ 2 Rdi , which are drawn from
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a distribution with conditional pdf lið�jhÞ and are independent of
those received by the other sensors. These individual signals,
although potentially informative, do not reveal the parameter
completely, i.e., each sensor faces a local identification problem.
We assume, however, that h* is identifiable if one has access to
the signals received by all sensors. Thus, individual sensors need
to supplement their local observations with information communi-
cated with their neighbors. In particular, each sensor i propagates
a pdf pi;k : H! R
0 over the parameter space

pi;kþ1ðhÞ ¼ gi;kliðsiðk þ 1ÞjhÞ
Y

j2Ni[fig
ðpj;kðhÞÞaij

ĥiðkÞ 2 arg max
h2H

pi;kðhÞ (14)

where gi,k is a normalization constant ensuring that pi,kþ1 is a
proper pdf, Ni is the set of nodes (neighbors) connected to sensor
i, and aij are weights such that

P
j2Ni[fig aij ¼ 1. The update is the

same as the standard Bayes rule with the exception that sensor i
does not just use its own prior but a geometric average of its
neighbors’ priors. Given that G is connected, Rad and Tahbaz-
Salehi [33] show that the distributed estimator (14) is weakly con-
sistent5 under broad assumptions on the signal models lið�jhÞ. The
results in Refs. [34] and [35] suggest that this algorithm is even
applicable to a time-varying graph topology with asynchronous
communication.

5.1.1 Specialization to Gaussian Distributions. We now spe-
cialize the general scheme of Ref. [33] to Gaussian distributions.
To our knowledge, this specialization is new and the theorem
obtained below (Theorem 3) shows that the resulting distributed
linear Gaussian estimator is mean square consistent,6 which is
stronger than the weak consistency4 shown in Ref. [33, Theorem
1]. Suppose that the agents’ measurement signals are linear in the
parameter h* and perturbed by Gaussian noise

siðkÞ ¼ Hih
� þ eiðkÞ; eiðkÞ 
 N ð0;EiÞ; 8i (15)

Let Gðx;XÞ denote a Gaussian distribution (in information space)
with mean X�1x and covariance matrix X�1. Since the private
observations (15) are linear Gaussian, without the loss of general-
ity, the pdf pi,k of agent i is the pdf of a Gaussian Gðxi;k;Xi;kÞ.
Exploiting that the parameter h* is static, the update equation of
the distributed filter in Eq. (14), specialized to Gaussian distribu-
tions, is

xi;kþ1 ¼
X

j2Ni[fig
aijxj;k þ HT

i E�1
i siðkÞ

Xi;kþ1 ¼
X

j2Ni[fig
aijXj;k þ HT

i E�1
i Hi

ĥiðkÞ :¼ X�1
i;k xi;k

(16)

In this linear Gaussian case, we prove (in Ref. [36]) a strong result
about the quality of the estimates in Eq. (16).

THEOREM 3. Suppose that the communication graph G is con-

nected and the matrix HT
1 … HT

n

� �T
has rank dh. Then, the

estimates (16) of all agents converge in mean square to h*, i.e.,

lim
k!1

E ĥiðkÞ � h�
��� ���2
� �

¼ 0; 8i

5.1.2 Specialization to Particle Distributions. Suppose that
the pdf pi,k is represented by a set of particles fwm

i;k; h
m
i;kg

Np

m¼1,
which are identical for all sensors initially (at k¼ 0). Since the

parameter h* is stationary, the particle positions hm
i;k will remain

the same across the sensors for all time. The update equation of
the distributed filter in Eq. (14), specialized to particle distribu-
tions, only needs to propagate the particle importance weights wm

i;k
and is summarized in Algorithm 1.

Algorithm 1: Distributed particle filter at sensor i

1: Input: Particle sets fwm
j;k; h

m
j;0g for m¼ 1,…, Np and

j 2 Ni [ fig, private signal si(kþ 1), and pdf lið�j�Þ
2: Output: Particle weights fwm

i;kþ1g for m¼ 1,…, Np

3: Average priors: �wm
i;k  exp

P
j2Ni[fig aij logðwm

j;kÞ
	 


4: Update: wm
i;kþ1  �wm

i;kliðsiðk þ 1Þjhm
i;0Þ for m¼ 1,…, Np

5: Normalize the weights

6: Return fwm
i;kþ1g for m¼ 1,…, Np

5.2 Distributed Model-Free Algorithm. To distribute the
model-free algorithm (9), the sensor formation needs to estimate
its configuration xt, the centroid mt, and the SA to the signal gradi-
ent W(xt)zt at each measurement location (i.e., at each time t)
using only local information. We introduce a fast time-scale k¼ 0,
1,…, which will be used for the estimation procedure at each time
t. During this, the sensors remain stationary and we drop the index
t to simplify the notation. As mentioned earlier, we suppose that
each sensor i receives a relative measurement of the state of each
of its neighbors j 2 Ni

sijðkÞ ¼ xj � xi þ eijðkÞ; eijðkÞ 
 N ð0;EijÞ (17)

where eij(k) is the measurement noise, which is independent at any
pair of times on the fast time-scale and across sensor pairs. If each
sensor manages to estimate the states of the whole sensor forma-
tion using the measurements {sij(k)}, then each can compute the
FD weights in Eq. (7) on its own.

The distributed linear Gaussian estimator (16) can be employed
to estimate the sensor states x. Notice that it is sufficient to esti-
mate x in a local frame because neither the FD computation (7)
nor the gradient ascent (9) requires global state information.
Assume that all sensors know that sensor 1 is the origin at
every measurement location. Let x� :¼ 0T ðx2 � x1ÞT � � �

�
ðxn � x1ÞT �T denote the true sensor states in the frame of sensor 1.
Let x̂iðkÞ denote the estimate that sensor i has of x* at time k on
the fast time-scale. The vector form of the measurement equations
(17) is

sðkÞ ¼ ðB� Idx
ÞTx� þ eðkÞ (18)

where B is the incidence matrix of the communication graph G.
The measurements (18) fit the linear Gaussian model in Eq. (15).
Since the first element of x* is always 0, only (n – 1)dx compo-
nents need to be estimated. As the rank of B� Idx

is also (n – 1)dx,
Theorem 3 allows us to use the distributed estimator (16) to
update x̂iðkÞ.

Concurrently with the state estimation, sensor i would be
obtaining observations zi,t(k) of the signal field for k¼ 0, 1,….7 In
the centralized case (Sec. 3), each sensor uses the following gra-
dient approximation:

gðmt; yÞ � WðxtÞzt ¼
Xn

i¼1

coliðWðxtÞÞzi;t (19)

where coliðWðxtÞÞ denotes the ith column of the FD-weight ma-
trix. Since xt and zt are not available in the distributed setting,
each sensor can use its local measurements zi,t(k) and its estimate5Weak consistency means that the estimates ĥiðkÞ converge in probability to h*,

i.e. limk!1PðkĥiðkÞ � h�k 
 eÞ ¼ 0 for any e> 0 and all i.
6Mean-square consistency means that the estimates ĥiðkÞ converge in mean-

square to h*, i.e. limk!1 E½kĥiðkÞ � h�k2� ¼ 0 for all i.

7The time-scales of the relative state measurements and the signal measurements
might be different but for simplicity we keep them the same.
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x̂i
tðkÞ of the sensor states to form its own local estimate of the sig-

nal gradient

ĝi;tðkÞ :¼ coliðWðx̂i
tðkÞÞÞ

1

k þ 1

Xk

s¼0

zi;tðsÞ (20)

In order to obtain an approximation to g(mt, y) as in Eq. (19) in a
distributed manner, we use a high-pass dynamic consensus filter
[37] to have the sensors agree on the value of the sum

ĝtðkÞ :¼ n
1

n

Xn

i¼1

ĝi;tðkÞ
 !

Each node maintains a state qi,k, receives an input lik, and pro-
vides an output rik with the following dynamics:

qi;kþ1 ¼ qi;k þ b
X
j2Ni

ðqj;k � qi;kÞ þ b
X
j2Ni

ðlj;k � li;kÞ

ri;k ¼ qi;k þ li;k

(21)

where b> 0 is a step-size. For a connected network, Ref. [37,
Theorem 1] guarantees that ri,k converges to 1=n

P
i li;k as k

!1. The following result can be shown by letting li;k :¼ ĝi;tðkÞ
and is proved in the Appendix.

THEOREM 4. Suppose that the communication graph G is
strongly connected. If the sensor nodes estimate their states x* from
the relative measurements (18) using algorithm (16), compute the
FD weights (7) using the state estimates, and run the dynamic con-
sensus filter (21) with input li;k :¼ ĝi;tðkÞ, which was defined in
Eq. (20), then the output ri,k of the consensus filter satisfies

n lim
k!1

E½ri;k�
� �

¼ gðm�; yÞ þ b; 8i 2 f1;…; ng

where g(m*, y) is the true signal gradient at m� :¼
Pn

i¼1 x�i =n and
b is the error in the FD approximation (5).

After this procedure, the agents agree on a centroid for the for-
mation and a gradient estimate, which can be used to compute the
next formation centroid according to Eq. (9). Since the FD
weights are recomputed at every t, the formation need not be
maintained accurately. This allows the sensors to avoid obstacles
and takes care of the motion uncertainty.

5.3 Distributed Model-Based Algorithm. In this section, we
aim to distribute the model-based source-seeking algorithm (13).
We assume that sensors which are sufficiently far from each other
receive independent information. This is justified because when
the sensing footprints of two sensors do not overlap, their sensed
signals (if any) will not be coming from the same source. As a
result, computing the MI gradient in Eq. (12) with respect to xi is
decoupled from the states of the distant sensors.

THEOREM 5. Let V i denote the set of sensors (excluding i) whose
sensing footprints overlap with that of sensor i. Let Vi denote the
rest of the sensors. Suppose that sensor i’s measurements, zi, are
independent (not conditionally on y, as before) of the measure-
ments, z �Vi

, obtained by the sensors �Vi, i.e., ptðzi; z �Vi
jxi; x �Vi

Þ
¼ ptðzijxiÞptðz �Vi

jx �Vi
Þ. Then,

@

@xi
Iðy; zi; zVi

; zV i
jxi; xV i

; xV i
Þ ¼ @

@xi
Iðy; zi; zV i

jxi; xV i
Þ

Proof. By the chain rule of MI and then the independence of zi

and zV i

Iðy; zi; zVi
; zV i
jxi; xV i

; xV i
Þ

¼ Iðy; zi; zV i
jxi; xV i

Þ þ Iðy; zV i
jzi; zV i

; xi; xV i
; xVi
Þ

¼ Iðy; zi; zV i
jxi; xV i

Þ þ Iðy; zV i
jzV i

; xV i
; xVi
Þ

The second term above is constant with respect to xi �

As a result of Theorem 5 and the SA algorithm in Eq. (13), sen-
sor i updates its pose as follows:

xi;tþ1 ¼ xi;t þ ctptðzfig[Vi;t; xfig[Vi;tÞ (22)

This update is still not completely distributed as it requires knowl-
edge of xV i;t and the pdf pt.

8 We propose to distribute the computa-
tion of pt via the distributed particle filter (Algorithm 1). Then,
each sensor maintains its own estimate of the source pdf, pi,t, rep-
resented by a particle set fwm

i;t; y
m
i;tg. Given a new measurement,

zi,tþ1, sensor i averages its prior, pi,t, with the priors of its neigh-
bors and updates it using Bayes rule. Finally, to obtain xVi ;t we use
a flooding algorithm (Algorithm 2). The convergence analysis of
the gradient ascent scheme in the distributed case (22) remains the
same as in Sec. 4 because each sensor i computes the complete
MI gradient. This is possible because due to Theorem 5 the states
and measurements of distant sensors are not needed, while Algo-
rithm 2 provides the information from the nearby sensors.

Algorithm 2: State exchange algorithm at sensor i

1: Input: Communication radius rc, sensing radius rs, state xi

2: Output: Array ai with ai[j]¼ xj if j 2 V i [ fig and
ai[j]¼ empty else

3: ai½i�  xi; ai½j�  empty; j 6¼ i � Holds the required sen-
sor states

4: b minfceilð2rs=rcÞ; ng � Number of rounds needed

5: for k ¼ 1…b do
6: Send ai to neighbors Ni, receive {aj} from j 2 Ni

7: for j 2 Ni do
8: for l ¼ 1…n do
9: if ðai½l�¼emptyÞ&&ðaj½l� 6¼emptyÞ then ai½l� aj½l�

6 Applications

The performance of the source-seeking algorithms is demon-
strated in simulation using a team of ten sensors to localize the
source of a wireless radio signal. A radio signal is suitable for
comparing the two algorithms because it is very noisy and diffi-
cult to model and yet most approaches for wireless source seeking
are model-based. We begin by modeling the received signal
strength (RSS), which is needed for the model-based algorithm.

6.1 RSS Model. Let the positions of a wireless source and re-
ceiver in 2D be y and x, respectively. The RSS (dBm) at x is mod-
eled as

Prxðx; yÞ ¼ Ptx þ Gtx � Ltx þ Grx � Lrx

� Lfsðx; yÞ � Lmðx; yÞ � Rðx; yÞ

where Ptx is the transmitter output power (18 dBm in our experi-
ments), Gtx is the transmitter antenna gain (1.5 dBi), Ltx is the
transmitter loss (0 dB), Grx is the receiver antenna gain (1.5 dBi),
Lrx is the receiver loss (0 dB), Lfs is the free space loss (dB), Lm is
the multipath loss (dB), and R is the noise. The free space loss is
modeled as

Lfsðx; yÞ ¼ �27:55þ 20 log10ð�Þ þ 20 log10ð x� yk k2Þ

where � is the frequency (2400 MHz). The model from Ref. [38]
is used for the multipath loss

Lmðx; yÞ ¼
aþ bkðx; yÞ; if kðx; yÞ > 0

0; else

(

8Since all sensors have the same observation model h(�, �), each sensor can
simulate measurements zV i ;t as long as it knows the configurations zVi ;t.
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where a is a multiwall constant (30 dB), b is a wall attenuation
factor (15 dB/m), and k(x, y) denotes the distance traveled by the
ray from y to x through occupied cells in the environment (repre-
sented as an occupancy grid). Finally, if the measurement is line-
of-sight, i.e., k(x, y)¼ 0, the fading R(x, y) is Rician (l, r); other-
wise it is Rayleigh (r). We used l¼ 4 dB and r¼ 20 dB in the
simulations.

6.2 Simulation Results. The first experiment aims at verify-
ing the conclusions of Theorem 4 when the sensor formation is
not maintained well, namely that the distributed relative pose esti-
mation and the consensus on the local FD gradient estimates con-
verge asymptotically to an unbiased (up to the error in the FD
approximation) gradient estimate. Ten sensors were arranged in a
distorted “circular” formation (see Fig. 1) and were held station-
ary during the estimation procedure (on the fast time-scale). Ini-
tially, the sensors assumed that they were in a perfect circular
formation of radius of 1.75 m. Relative measurements (17) with
noise covariance Eij¼ 0.4I2 were exchanged to estimate the sensor
states. At each time k, sensor i used its estimate x̂iðkÞ to compute
the FD weights via Eq. (7). Wireless signal measurements
obtained according to the RSS model were combined with the FD
weights to form the local gradient estimates (20), which were
used to update the state of the consensus filter according to Eq.
(21). Figure 1 shows that the errors in the pose and the gradient
estimates tend to zero after 80 iterations on the fast time-scale.

Next, we demonstrate the ability of our algorithms to localize
the source of a wireless signal obtained according to the RSS
model of Sec. 6.1. The performance of the model-free algorithm
is illustrated in Fig. 2. A circular formation with radius of 1.75 m
consisting of ten sensors was maintained. The communication ra-
dius was 6 m, while the sensing radius was infinite. The sensors
did not coordinate to maintain the formation. They were kept to-
gether by the agreement on the centroid and the signal gradient,

Fig. 1 Joint position and gradient estimation at a single measurement location (on the fast time-scale). The first plot shows
the true sensor positions (red circles), initial position estimates (blue circles), and the true gradient of the signal field (red
arrow). The second plot shows the position estimates after 40 iterations (blue circles) and the gradient estimate of sensor 1
(blue arrow). The third column shows the root mean squared error (RMSE) of the position (top) and centroid (bottom) esti-
mates of all sensors averaged over 50 independent repetitions. The fourth column shows the RMSE of the gradient magni-
tude and orientation estimates.

Fig. 2 The paths followed by the sensors after 30 iterations of
the model-free source-seeking algorithm in an obstacle-free
environment. The white circles indicate sensor 1’s estimates of
the source position over time. The plots on the right show the
average error of the source position estimates and its standard
deviation averaged over 50 independent repetitions.

Fig. 3 The paths followed by the sensors after 30 iterations of the model-based source-seeking algorithm in an environment
without obstacles (left) and with obstacles (right). The white circles indicate sensor 1’s estimates of the source position over
time. The plots show the average error of the source position estimates and its standard deviation averaged over 50 inde-
pendent repetitions. The evolution of sensor 1’s distributed particle filter is shown in each scenario (bottom row).
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achieved via the distributed state estimation and the consensus fil-
ter. At time t, each sensor i applied the control ui;t ¼ ctĝi;tðKmaxÞ,
where ĝi;tðKmaxÞ is the gradient estimate after Kmax¼ 50 iterations
on the fast time-scale and ct is the step-size. Unlike the persistent
measurements in Fig. 1, the sensors measured their relative states
and the wireless signal only 10 times and stopped updating their
local gradient estimates to enable faster convergence of the con-
sensus filter. The initial distance between the signal source and
the centroid of the sensor formation was 44.2 m. Averaged over
50 independent repetitions, the sensors managed to estimate the
source location within 4.62 m in 30 iterations.

The same initial source and sensor positions were used to set up
the model-based experiments. Figure 3 shows the performance in
environments with and without obstacles. The communication ra-
dius was 10 m, while the sensing radius was infinite. The sensors
maintained distributed particle filters with 4000 particles and used
five signal measurements to update the filters before moving
(unlike the ten used in the model-free case). A stochastic MI gra-
dient was obtained via ten simulated signal measurements only.
Averaged over 50 independent repetitions, the sensors managed to
estimate the source location within 2.96 m in the obstacle-free
case and 1.86 m in the obstacle case after 30 iterations of the algo-
rithm. It is interesting to note that the performance of the model-
based algorithm is better when obstacles are present in the envi-
ronment. When the model is good and the environment is known,
the wall attenuation of the signal helps discount many hypotheti-
cal source locations, which would not be possible in the obstacle-
free case (see the filter evolution in Fig. 3). As a result, the model-
based algorithm outperforms the model-free one. However, we
expect that as the quality of the model degrades so would the per-
formance of the model-based approach and the model-free algo-
rithm would become more attractive.

7 Conclusion

Distributed model-free and model-based approaches for source
seeking with a mobile sensor network were developed. The sto-
chastic gradient ascent approach in the model-free case does not
need global localization and is robust to deformations in the ge-
ometry of the sensor team. The SA simplifies the algorithm and
provides convergence guarantees. The model-based method has
the sensors follow a stochastic gradient of the MI between their
expected measurements and source estimates. In this case, the SA
enables a key trade-off between time spent moving the sensors and
time spent planning the most informative move. The experiments
show that the model-based algorithm outperforms the model-free
one when an accurate model of the signal is available. Its draw-
backs are that it relies on knowledge of the environment, global
localization, and a flooding algorithm to exchange the sensor states,
which can be demanding for the network. If computation is limited,
the environment is unknown, the signal is difficult to model, or
global localization is not available, the model-free algorithm would
be the natural choice. In the future work, we plan to apply the algo-
rithms to other signals, compare their performance to other
approaches in the literature, and carry out real-world experiments.
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Appendix: Proof of Theorem 4

From Theorem 3, x̂iðkÞ!L
2

x�; 8i, which implies convergence in
L1 and in probability. Convergence in L1 implies that the sequence
fx̂iðkÞg is uniformly integrable (UI) for all i [39, Theorem 5.5.2].

We claim that this implies that the sequence of FD weights
Wðx̂iðkÞÞ computed in Eq. (7) is UI for each i. The matrix U in Eq.
(7) is a bounded continuous function of x̂iðkÞ, which means that
there exists a constant KU

i 	 1 for each i such that
Uðx̂iðkÞÞ�T
�� ��

1
	 KU

i . Define aiðkÞ :¼ x̂i
iðkÞ �

Pn
j¼1 x̂i

jðkÞ=n. From
Eq. (8),

Wðx̂iðkÞÞ
�� ��

1
	

2d2e�d2 a1ðkÞk k2
2aT

1 ðkÞ

..

.

2d2e�d2 anðkÞk k2
2aT

n ðkÞ

2
6664

3
7775

T
����������

����������
1

Uðx̂iðkÞÞ�T
�� ��

1

	 2d2KU
i

Xn

j¼1

e�d2 ajðkÞk k2

2 ajðkÞ
�� ��

1

	 2d2KU
i

Xn

j¼1

x̂i
jðkÞ �

1

n

Xn

l¼1

x̂i
lðkÞ

�����
�����

1

	 4d2KU
i

Xn

j¼1

x̂i
jðkÞ

��� ���
1
¼ 4d2KU

i x̂iðkÞ
�� ��

1

By UI of fx̂iðkÞg, for any e> 0, there exist Ki � [0,1) such that
E½ x̂iðkÞk k11f x̂iðkÞk k1
Kig� 	 e for all k. Then for all i, k

E Wðx̂iðkÞÞ
�� ��

1
1f Wðx̂iðkÞÞk k1
4d2KU

i Kig

h i

	 4d2KU
i E x̂iðkÞ

�� ��
1
1f4d2KU

i x̂iðkÞk k1
4d2KU
i Kig

h i
	 4d2KU

i e

Since Wðx̂iðkÞÞ is a continuous function of x̂iðkÞ by the continuous

mapping theorem, Wðx̂iðkÞÞ!p Wðx�Þ; 8i. This, coupled with the

UI of fWðx̂iðkÞÞg for all i implies that Wðx̂iðkÞÞ!L
1

Wðx�Þ;8i. The
signal measurements zi(s) in Eq. (20) are independent of the esti-

mates Wðx̂iðkÞÞ because the latter are based on the relative meas-
urements in Eq. (17). Therefore,

EĝiðkÞ ¼ E½coliðWðx̂iðkÞÞÞ� 1

k þ 1

Xk

s¼0

EziðsÞ

¼ E½coliðWðx̂iðkÞÞÞ�hðx�i ; yÞ ! coliðWðx�ÞÞhðx�i ; yÞ

(23)

Now, consider the behavior of the consensus filter in Eq. (21) with
li;k ¼ ĝiðkÞ. Eliminating the state qi,k and writing the equations in
matrix form gives

rkþ1 ¼ Indx
� bðL� Idx

Þð Þrk þ ðlkþ1 � lkÞ

where L is the Laplacian of the communication graph G. Taking
expectations above results is a deterministic linear time-invariant
system, which was analyzed in Ref. [37]. In light of Eq. (23),
Proposition 1 in Ref. [37] shows that for all i

lim
k!1

E½ri;k� �
1

n

Xn

i¼1

coliðWðx�ÞÞhðx�i ; yÞ
 !

¼ 0

Finally, the FD approximation in Eq. (5) shows that

lim
k!1

Erik ¼
1

n
Wðx�Þ

hðx�1; yÞ
..
.

hðx�n; yÞ

0
B@

1
CA ¼ 1

n
ðgðm�; yÞ þ bÞ; 8i
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