[ ]

Journal of

Control

International Journal of Control

ISSN: 0020-7179 (Print) 1366-5820 (Online) Journal homepage: https://www.tandfonline.com/loi/tcon20

Taylor & Francis

Taylor & Francis Group

Estimation and outbreak detection with interval
observers for uncertain discrete-time SEIR
epidemic models

Kwassi H. Degue & Jerome Le Ny

To cite this article: Kwassi H. Degue & Jerome Le Ny (2019): Estimation and outbreak detection
with interval observers for uncertain discrete-time SEIR epidemic models, International Journal of
Control, DOI: 10.1080/00207179.2019.1643492

To link to this article: https://doi.org/10.1080/00207179.2019.1643492

@ Accepted author version posted online: 11
Jul 2019.
Published online: 24 Jul 2019.

\]
CA/ Submit your article to this journal &

||I| Article views: 58

A
& View related articles '

P

@ View Crossmark data (&'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tcon20


https://www.tandfonline.com/action/journalInformation?journalCode=tcon20
https://www.tandfonline.com/loi/tcon20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207179.2019.1643492
https://doi.org/10.1080/00207179.2019.1643492
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00207179.2019.1643492
https://www.tandfonline.com/doi/mlt/10.1080/00207179.2019.1643492
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2019.1643492&domain=pdf&date_stamp=2019-07-11
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2019.1643492&domain=pdf&date_stamp=2019-07-11

INTERNATIONAL JOURNAL OF CONTROL
https://doi.org/10.1080/00207179.2019.1643492

Taylor & Francis
Taylor & Francis Group

W) Check for updates

Estimation and outbreak detection with interval observers for uncertain

discrete-time SEIR epidemic models*
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ABSTRACT

According to the World Health Organization, infectious diseases are among the top ten causes of death
worldwide. To prepare intervention strategies in a timely manner, tracking the evolution of these dis-
eases is critical. For this purpose, public health services have access to noisy counts of infected people,
which we use here to design a state estimator for a nonlinear discrete-time Susceptible-Exposed-Infected-
Recovered (SEIR) epidemic model. We consider the practical case in which only sets of admissible values
are known for the model’s disturbances, uncertainties and parameters. Moreover, no bounds are available
for the uncertain transmission rate from the ‘susceptible’ to the ‘exposed’ stage of the illness. We estimate
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the set of possible values of the state using an interval observer and characterise the stability and size of
the estimation errors using linear programming. Furthermore, we propose an epidemic outbreak detec-
tor that leverages these state interval estimates. We demonstrate the observer’s performance in numerical

simulations.

1. Introduction

About 31.1 million to 43.9 million people were living with
HIV in 2017 (World Health Organization, 2018), while seasonal
influenza epidemics usually cause three to five million cases
of severe illness and result in about 250,000 to 500,000 deaths
worldwide every year, according to the World Health Organiza-
tion (Vaillant, La Ruche, Tarantola, & Barboza, 2009). Infectious
disease surveillance plays a major role in analysing the origins,
dynamics and spread of such epidemics. Public Health Services
(PHS) rely on surveillance data, e.g. records of infected people
collected by agencies such as the Centers for Disease Control
and Prevention in the United States, to estimate these infec-
tious diseases’ activity levels, prepare intervention strategies and
design policy recommendations.

Mathematical modelling of epidemics has become an essen-
tial tool in the sentinel role played by early outbreak detection
systems and for public health response planning (Dukic, Lopes,
& Polson, 2012; Fallas-Monge, Chavarria-Molina, & Alpizar-
Brenes, 2016, November; Grassly & Fraser, 2008; Kaplan, Craft,
& Wein, 2002; Keeling & Rohani, 2008). Kermack and McK-
endrick (1927) proposed the first modern mathematical epi-
demiology model, namely, a Susceptible-Infectious-Recovered
(SIR) model for the plague (London 1665-1666, Bombay 1906)
and cholera (London 1865) epidemics. The basic SIR model
assumes that a fixed population, at any time, can be divided
into three compartments: susceptible people (those who are not
infected but could become infected), infectious people (those
who have the disease and are able to infect others), and recov-
ered people (those who were infected by the disease and are now

immune). The model assumes that the total number of people
remains constant as well as homogeneous mixing, that is, each
individual is equally likely to come in contact with any other
(Dukic et al., 2012). The proportions of the population in each
compartment form the states of an SIR model.

In the case of some infectious diseases such as tuber-
culosis (Feng, Huang, & Castillo-Chavez, 2001), HIV/AIDS
(Castillo-Chavez, Cooke, Huang, & Levin, 1989) or influenza-
like illnesses (Dukic et al., 2012), one needs to extend
the standard SIR model and introduce a fourth compart-
ment and state corresponding to the disease’s latency period,
when a person is infected but not yet able to infect oth-
ers. This extension is called the Susceptible-Exposed-Infected-
Recovered (SEIR) model (Hethcote, 2000). Several estimators
have been previously designed to track the states of SEIR
models (Alonso-Quesada, De la Sen, Agarwal, & Ibeas, 2012;
Dukic et al., 2012; Ibeas, de la Sen, Alonso-Quesada, Zamani,
& Shafiee, 2014, December). Strong assumptions on the dis-
turbances or uncertain parameters in these models enable
the design of estimators converging to the true state values.
However, the problem of observer design for SEIR models
becomes very challenging in practice, when one has to take
into account the presence of disturbances or uncertain param-
eters whose values are only known to belong to an interval or
polytope. An interval estimation approach can address such
problems (Degue, Efimov, & Iggidr, 2016; Efimov, Perruquetti,
Raissi, & Zolghadri, 2013; Efimov, Polyakov, Fridman, Perru-
quetti, & Richard, 2015; Efimov, Raissi, & Zolghadri, 2013;
Gouzé, Rapaport, & Hadj-Sadok, 2000; Gucik-Derigny, Raissi,
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& Zolghadri, 2015; Mazenc, Dinh, & Niculescu, 2012). Using
input and output measurements, an observer has to estimate
the set of admissible values (interval) for the states at each
instant of time (Degue, Efimov, & Richard, 2018; Mazenc, Dinh,
& Niculescu, 2013, 2014; Moisan & Bernard, 2005; Rotondo,
Cristofaro, Johansen, Nejjari, & Puig, 2017; Yousfi, Raissi,
Amairi, Gucik-Derigny, & Aoun, 2017). A major advantage of
the interval estimation methodology is that it allows us to take
into account many types of uncertainties in the system (Efimov
& Raissi, 2015; Mazenc & Bernard, 2010, 2011).

Contributions. This article presents a strategy based on inter-
val estimation to track the four states of a discrete-time SEIR
epidemic model in the presence of uncertainty, and to com-
pute a decision variable that helps predict epidemic outbreaks.
An interval observer was proposed for the first time for an epi-
demic model by Diaby, Iggidr, and Sy (2015). Their approach
showed reasonable accuracy in simulation but the result was
not optimal since the observer gain was selected manually.
Instead, we use efficient methods to compute optimal inter-
val observer gains that minimise the Loo-gain of the estima-
tion error dynamics, following an approach suggested by Briat
and Khammash (2016). An interval observer was also pro-
posed by Bliman and D’Avila Barros (2016), which applies to
SIR rather than SEIR models however and so does not con-
sider the fourth compartment of the population corresponding
to the incubation stage for diseases such as influenza. Further-
more, it assumes continuous-time dynamics, whereas we focus
on discrete-time epidemic models, which have gained substan-
tial importance during the last decade (Hu, Teng, & Jiang, 2012;
Mickens, 2007). A more important difference is that Bliman
and D’Avila Barros (2016) assumed perfect measurements of
new infectives per unit of time BSI to be available, as well as
lower and upper bounds on the transmission rate 8. In contrast,
we assume that PHS have only access to noisy measurements
of the infectious population I, possibly to bounds on BSI, and
that no bounds on the transmission rate 8 are given. Although
the observer proposed by Bliman and D’Avila Barros (2016)
provided accurate results in simulated models, in practice the
transmission rate § is a highly uncertain parameter that can-
not be obtained from biological considerations (Bichara, Cozic,
& Iggidr, 2014; Hooker, Ellner, Roditi, & Earn, 2011) and
its bounds are generally unknown in epidemiological models
(Degue et al., 2016). Moreover, for SEIR models, the quantity
BSI represents newly exposed individuals rather than new infec-
tives, which can be difficult to measure since these individuals
might not even feel symptoms yet. Furthermore, compared to
the recent literature on interval observer design, such as Gucik-
Derigny et al. (2015) and Robinson, Marzat, and Raissi (2017),
the matrix A governing the state dynamics is uncertain in this
article. Only linear systems and unknown inputs that have no
impact on the output are considered in Robinson et al. (2017).
In contrast, we consider here a nonlinear system with unknown
inputs that affect the output, leading us to design upper and
lower bounds for the uncertain input before constructing an
interval observer for the system. Finally, we use our interval
observer to design a novel on-line outbreak detection algorithm.
Namely, we leverage the bounds on the transmission rate 8 pro-
duced by our observer to decide if the disease-free equilibrium
of the SEIR model becomes unstable.

In Section 2, we present the problem statement and some
results on interval estimation and the stability of positive sys-
tems. Section 3 describes the application of these results to
design an interval observer for a discrete-time SEIR epidemic
model and discusses how to compute upper and lower bounds
for the uncertain transmission rate 8. Section 4 presents compu-
tational methods to obtain interval observer gains that minimise
the Loo-gain of the estimation error dynamics. The conditions
obtained provide guarantees on the error bounds of the pro-
posed interval observer. Section 5 describes an on-line outbreak
detection algorithm based on the interval estimates provided in
Section 3. Finally, numerical simulations presented in Section 6
illustrate the performance of the observer.

Notation. We denote the real numbers by R, the integers by Z,
Ry ={r e R:t > 0}andZ; = Z N R;. We denote the cones
of vectors of dimension n with positive and nonnegative com-
ponents by R? ; and R’} respectively. The standard simplex in
R"is A, ={x € Ri Z?Zl x; = 1}. We denote the p-norm of
a vector x € R" by |x|, := (ZLI |x:[P)1/P, for p € [1,00), and
|%|oo := maxXie(1,.ny |xi|. For a vector-valued signal u : Z, —
R", we denote its Loo-norm as ||ul|L,, = sup,¢ |ttloc. We
denote by L7 the set of signals u with the property ||u||r,, <
0o. The n x n identity matrix is denoted I,, and matrices with
all elements equal to 1 and dimensions n x m and p x 1 are
denoted 1,,x,» and 1, respectively. For two vectors x1,x; €
R" or matrices A1, Ay € R™™", the relations x; < x; and A1 <
A, are understood element-wise. A matrix A € R"*" is called
Schur stable if all its eigenvalues have absolute value strictly less
than one. It is called nonnegative if all its elements are non-
negative, i.e. if A > 0. A matrix A € R™" is Hurwitz if all its
eigenvalues have negative real parts. It is called Metzler if all its
elements outside of the main diagonal are nonnegative.

2. Problem statement

A discrete-time SEIR model obtained by discretizing a classical
continuous-time model (Hethcote, 2000) illustrated on Figure 1,
using a forward Euler discretization (Hu et al., 2012), reads

Str1 =1 — w)St — BStI; + u,
Erp1 =1 —a— wE: + BSis,
iy = QA -y —wl + aky,
Rep1 = (1 — Rt + vl

(1)

In(1),x; :=[S; E; I; R;]T are state variables representing pro-
portions of a population in each of four compartments. The
(unitless) parameters o, 8 and y stand for the uncertain transi-
tion rates from one disease stage to the next, while u represents
the natural birth and death rate. These parameters are assumed
constant to simplify the discussion, but the extension of the
observer design methodology in Section 3 to time-varying
parameters is straightforward. We describe the disease trans-
missions that arise from contacts between susceptible and infec-
tious people by the first equation of (1). At each time-period,
the pathogen is transmitted by each infectious individual to 8
individuals, but a new disease case occurs only if the contact is
made with a susceptible person, with probability S;. Hence, at
time ¢, a fraction BI; of people in the compartment S migrate to
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Figure 1. The Susceptible-Exposed-Infected-Recovered (SEIR) model.

the ‘exposed but not yet infectious’ compartment E. A fraction
o of the people in compartment E move to the infectious com-
partment I while a fraction y of infectious individuals migrate
to the recovered compartment R, at which point they become
immune.

The constants « € [a, @], ¥y € [y,7] and u € [u, 1] are
unknown but taking values in given intervals of R, i.e. the
nonnegative parameters o, o, ¥, ¥, i, il € R4 are known. The
constant f is highly uncertain and no bounds on 8 are given a
priori. The initial condition x( belongs to the standard simplex
Ay, ie. x9 > 0and So + Eo + Ip + Ry = 1. Although the exact
value of xp is unknown, we assume that bounds x, xp € R‘_ﬁ_ are
given such that x, < xo < xp. All compartments experience the
same death rate equal to the birth rate y at period ¢. Finally, we
make the following assumption throughout the paper.

Assumption2.1: The parametersa, B, y, |4 are nonnegative and
satisfy the following constraints: p+a <1, u+y <1, pu+
=1

Assumption 2.1 is introduced to ensure nonnegativity of
the state x of the system (1) and places an upper bound on
the stepsize used for the Euler discretization. Although more
refined numerical integration methods can be used to discretise
the continuous-time SEIR model (Ibeas, de la Sen, Alonso-
Quesada, & Zamani, 2015; Mickens, 2007) the model (1) can
serve as a first step to apply the interval observer methodology.

Proposition 2.1: Under Assumption 2.1, if xo € Ay, then x; €
Ay, for all t > 0. In particular, a state trajectory of the model (1)
is nonnegative and in L3

Proof: By induction, suppose x; € A4. Then it is immediate
from Assumption 2.1, x; > 0, and the last three equations of (1)
that Ey41, It4+1, Re+1 > 0. Moreover

St+1=1A —p— BI)S + u,
and I; < 1 because x; € Ay. So
w+BLE<u+p<1,
by Assumption 2.1, and hence S;+; > 0 as well. Finally,

Str1+ B+ i R = A —w)( S+ E+ L +R) +
=(1-w+pn=1

and so x4 € Ag. |
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The measured output consists of noisy counts of the infec-
tious individuals (who typically present symptoms), which
could be determined by PHS using data obtained from doctors
and health centres for example Dukic et al. (2012),

()

where v € Lo is the measurement noise, withv < v, <v, Vt >
0, for some known constants v, v. The measurement noise $v$
can capture for instance the uncertain number of infectious
individuals who do not go to a health centre to diagnose their
disease.

We rewrite the system (1)-(2) as follows

v =1t + v,

Xt+1 = Axy + F¢ + Hp,

(3)
yr = Cx¢ + v,

where the incidence rate ¢; := BS;I;,i.e. the proportion of newly
infected individuals in the population at each time period, is
treated as an uncertain input. The uncertain matrix A and
constant matrices C, F and H in (3) are defined as follows

C=[0010], F=[-1100]Y, H=1[100 0],
1—u 0 0 0

A= 0 l—a—pun 0 0
0 o l—p—y 0
0 0 y 1—pn

Since the values of the parameters «, u and y are uncertain, the
matrix A is unknown, but we have the bounds A < A < A, with

[1—1 0 0 0
0 l—a—pu
A= o — [ E) ) 0 )
= 0 o l—y—n 0
0 0 Y 1—p0
1 13 0 0 0 7
- 0 l—a-— 0 0
A= e- K
0 o l—y—np 0
L o 0 vy 1-p]

In the sequel, we enforce nonnegativity and Schur stability of A,
A through the following assumptions, which strengthen the first
two inequalities of Assumption 2.1.

Assumption 2.2: The (nonnegative) upper bounds a, y, i are
such that A > 0, i.e.
a+p =<1

and y+p <L (4)

Furthermore, n>0.

Our goal in this paper consists in designing an interval
observer, i.e. state signal bounds 0 < x, < x; < X, forallt > 0,
which can then be used to develop a decision rule for disease
outbreak detection.

3. Interval observer design

In this section, we design an interval observer for the SEIR
model (1)-(2). First, we review some basic facts about inter-
val estimation and positive systems, which are needed in the
following.
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3.1 Preliminaries on positive systems

Given a matrix A € R™*", define A* = max{0,A} applied
element-wise, A~ = AT — A, and denote the matrix of absolute
values of all elements by |A| = AT + A™.

Lemma 3.1 (Efimov, Fridman, Raissi, Zolghadri, & Seydou,
2012): Let A € R™*" be a matrix and x € R" be a vector with
x < x < X for some x,x € R".

Then

ATx —A x<Ax<ATx— A" x (5)

Note in particular that if A >0, then AT = A, A~ =0,
and (5) reads simply

Ax < Ax < Ax. (6)

Next, consider the following discrete-time linear time-invariant
(LTT) system

Xt41 = Axt + Boy, :7Z4 — Ri,

(7)
)/t = C.Xt =+ Da)t,

where x; € R", y; € R and the matrix A € R}*". Any state
trajectory of the LTT system (7) is element-wise nonnegative
for all t > 0 provided that xp > 0, B € Rixq, and w is non-
negative. In addition, the output signal y; of such a system is
nonnegative if C € R‘ixn and D € Rz_xq. A dynamical system
satistying all these restrictions is called cooperative (monotone)
or nonnegative (Farina & Rinaldi, 2000; Smith, 1995).

3.2 Interval observer design
Suppose for now that the following bounds on the incidence
¢ = BSi; are available

(<0< Yt=0, (8)

where [ & > 0. For example, UNAIDS (2010) and Chowell,
Sattenspiel, Bansal, and Viboud (2016) describe methods used
for estimating the incidence of certain diseases. Moreover, the
relation (8) generalises an assumption of Bliman and D’Avila
Barros (2016), which considered that ¢; could be measured per-
fectly. Then, the equations of our interval estimator for (3) take
the following form

Xin1

= Ay, +F+£t —F ¢ +Hp
+L—Cx)—Lv+L v,
Xev1 =AXe +FT& —F ¢, +Hi
+ Ly — Cxo+ Lo — Ly,
x, =max{0, x }, % = max{0, x¢},

Xy =% X0 = Xo, )

where x,, x; € R* are respectively the lower and the upper inter-
val estimates for the state x;, and x P ¥ € R*are the states of (9).

Define the interval observer’s errors

g =x—X, and e = y; — x;. (10)
We select the interval observer gains L € R L € R*! such
that the matrices (A — LC) and (A — LC) are Schur stable and
nonnegative to enforce the positivity and the asymptotic stabil-
ity of these errors. Observer gains that satisfy such conditions

exist (for example L = L = 0).

Theorem 3.1: Under Assumptions 2.1 and 2.2, if the matrices
(A — LC) and (A — LC) are nonnegative, then the estimates x,
and x; given by (9) yield the relations

(11)
provided that 0 < x, < xo < Xo.
Proof: We can rewrite (3) as follows

xe41 = (A" = LO)x; + (A — A")x¢ + F§ + Hu + Ly; — Lv

for A’ equal to A or A and L equal to L or L. Therefore, the error
dynamics satisfy the equations

i=4 i=4
¢ =@A-LOg+) g, &=@A-LO&+) &
i=1 i=1
(12)
where

§=A—-Ax, &= (A — A)xy,

g, =LV-Lv-Lv, p=Lv-Ty-1,

g =Fu—(F'¢,—F &) H=@FL—F¢)-Fg
g,=Hu—Hu, @ =Hi-Hu.

When the Assumptions 2.1 and 2.2 are satisfied, we deduce from
Proposition 2.1 and Lemma 3.1 that the signals {gi, gl <i<
4} are nonnegative. Hence, we deduce from Section 3.1 that
e, > 0,e; > 0forall t > 0, since g, > 0, &g > 0 and the matri-
ces (A — LC) and (A — LC) are nonnegative. Consequently, the
order relation X, =% =< X: is satisfied for all t > 0. Therefore
the inequality (11) is true by construction of x, x, using the fact
that x; > 0 from Proposition 2.1. [ |

Remark 3.1: In general, when designing an interval observer,
assuming that there exist gains L, L such that the matrices (A —
LC) and (A — LC) are Schur stable and nonnegative is restric-
tive since such gains may not exist. However, from the structure
of the epidemic model (3) and the Assumptions 2.1 and 2.2,
such gains L, L exist for our problem (for example L = L = 0).
Therefore, here one does not need to use transformation of coor-
dinates methodologies such as those that proposed by Mazenc
et al. (2013) and Raissi, Efimov, and Zolghadri (2012).

To conclude this section, recall that our interval observer (9)
design does not assume that lower and upper bounds on the
transmission rate 8 were known a priori. We can then obtain
lower and upper bounds on B from the observer. Indeed,



when §,I, # 0 for some ¢, (and hence SiI; # 0 also), we deduce
from (8) the following bounds at time ¢

B, < B < B (13)

with

B, = Oxggt{(ékfk)—lgk}, B = Oxgggt{@kzk)—lék}. (14)

Remark 3.2: In practice, the parameters of the epidemic
model (1) may be time-varying, i.e. oy, ¢, ¢ and the transmis-
sion rate 8; may vary with time. The observer design method-
ology proposed here still applies to such a case. However, the
inequality (13) is then replaced by B, < B < By, with B, =

(Sljt)_lgt) Bt = (§tlt)_lgt, V t Z 0.

3.3 Bounding the incidence rate

In many cases, obtaining measurements or direct estimates of
the incidence rate ¢;, even in the form of reasonably accurate
bounds of the form (8), might be difficult. For SEIR models in
particular, this input corresponds to individuals moving to the
exposed stage of the disease, where they might not yet experi-
ence symptoms, and hence are often not yet diagnosed. In this
case, we propose a method for obtaining bounds (8) together
with the state estimates. The drawback of this approach how-
ever is that it introduces a delay of two periods in the release of
the state estimate.
From Equation (3), we get

Ytz = Cxego + Vigo, (15)

Y2 = CA%x; + CAFg; + CFepyy + CAHp 4 CHu + viqs.
(16)

The structure of the model (1)-(2) implies that CF =0, CH =0,
CAH =0 and CAF = «. Hence, we obtain from (16)

2
aly = yryo — CA X — vip.

Suppose now that we have the bounds 0 < x, < x; < x; for
some some ¢ > 0 (for example 0 < x, < x9 < Xp). Notice that
Az < A% < A2 and Az > 0 by Assumption 2.2. Hence, from (6)
we get ézp_ct < A2x; < A2%,. Since the matrix C s also nonnega-
tive, we then obtain the relations ¢ = & < Et, for the same time
period ¢, with

¢, =max{0,a™" (yy2 — v — CA’%)},

{; = max {O,Q_1 (;Vt+2 -V CAZ&)} > (17)

where we also used the fact that ¢; > 0, by Proposition 2.1. The
bounds (17) can then be used in the interval observer, as follows.
Suppose that we have the state bounds x, < x; < x; for some
time period ¢ produced by the observer Equations (9), and hence
x; < x¢ < X;. This is true by hypothesis for t =0, since x,, xo are
known. We then wait until period ¢+2 to obtain y;, and com-
pute (17) to obtain { o ¢, which can now be used in the differ-
ence Equation (9) to produce Xopr Xt+1> X4 1> X+1. Using the

fact that ¢ = o < Et, the argument of the proof of Theorem 3.1

INTERNATIONAL JOURNAL OF CONTROL e 5

then shows that Xe < x¢41 < Xt+1 and X1 < X1 < Xtt1
These state bounds therefore hold for all t by induction.

In conclusion, Theorem 3.1 remains valid when the bounds
[ ¢; entering (9), instead of being known a priori, are obtained
from (17) in parallel of the observer’s iterations. The algorithm is
then not causal since computing the state estimates for time 41
requires the knowledge of y;.,, introducing in practice a delay
in the estimator. Note however that causality could be poten-
tially recovered, at the price of a degradation in accuracy, by
coupling the approach above with a method for predicting y;1»
from the measurements available up to time ¢, e.g. using a higher
order sliding mode differentiator (Levant, Livne, & Yu, 2017).
Details about the implementation of such schemes are beyond
the scope of this paper and the characterisation of the resulting
accuracy is left for future work.

We now turn to the problem of choosing appropriate gains
L, L for the interval observer. Theorem 3.1 guarantees that the
errors (10) are nonnegative, in order to provide valid bounds on
the state. In practice, we also want these errors to be bounded,
and in fact as small as possible.

4. Selection of observer gains

In this section, we present a computational method to select
the observer gains while minimising the errors x — x,x — x.
The approach consists in computing the observer gains L, L
as solutions of an optimisation problem minimising the L
gain from the disturbances to the estimation errors of interest
(Briat & Khammash, 2016). Note that PHS design vaccination
strategies to drive the total infected (exposed plus infectious)
population asymptotically to zero (Alonso-Quesada et al., 2012;
Alonso-Quesada, De la Sen, & Ibeas, 2017), and so for this rea-
son and for concreteness we focus on estimating accurately the
variable s; = x2; + x3¢ = E; + I;. We define the upper s; and
lower s, estimates as 5; = X2,; + X3, 5, = Xy + X3y The cor-
responding estimation errors are § [ =SS =t ey and
E =5 —s =éy + es,r. We then rewrite the error system (12)
in the following form, considering § , & as outputs

€1 =A—-LO¢ + o, + LYG—vp+L (v —w)

(18)
%;t = Cl)gt,

er1=A—-LOe+ad+L (—v) +LT (v —v),

_ (19)
gt = q)ét,

for ® = [0 1 1 0] and the following nonnegative signals

w; = (A—A)x[—I—FQ—FJFEt—i—F’Et—i-HM — Hy,
o= (A—Ax + Fy —F ¢, —F&4+Hp —Hp.

We then aim to choose L minimising the Loo-gain (peak-to-
peak gain) from [@ v —v v — y]T to £ in (18), and similarly
for L and the Loo-gain from [@ v —v v — v]T to € in (19). Note
that these systems are nonnegative if the matrices A — LC and
A — LC are nonnegative.

We start by recalling some definitions and general facts about
the Loo-gain of nonnegative systems, which has been studied in
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Briat and Khammash (2016), Briat (2011) and Ebihara, Peau-
celle, and Arzelier (2011). Denote Gow := y the output signal of
the system (7) when the initial condition is xyp = 0 and the input
is w.

Definition 4.1: The Loo-gain for the system (7) is defined as
SUpP| ;=1 190@lIL-

We then have the following theorem.

Theorem 4.1 (Briat & Khammash, 2016; Naghnaeian & Voul-
garis, 2017): Let the matrix A € RT" and Be R}, Ce

R‘ixn, De ]R‘frxq. For p > 0, the following statements are
equivalent:

(a) The nonnegative LTI system (7) is asymptotically stable and
its Loo-gain is strictly less than p.
(b) The following Linear Programme (LP) is feasible:

(A—I)r+Blg] _ o
Ch—pl,+Dig| =
(20)

There exists .. € RY ) such that |:

Theorem 4.1 forms the the basis for optimising the observer
gains using linear programming, as shown in Proposition 4.1
below. Although this proposition can be obtained from the argu-
ments presented by Briat and Khammash (2016), in particular
their Proposition 19, we give below direct proofs, for com-
pleteness and clarity of exposition. First, we need the following
result.

Theorem 4.2 (Farina & Rinaldi, 2000): Let the matrix A €
R™ " be Metzler. The following statements are equivalent:

(a) The matrix A is Hurwitz.
(b) There exists h € R” , such that Ah < 0.

(c) There exists h € RZ ;) such that nla <o,

From this Theorem, we deduce a more convenient version of
the LP (20) when the system (7) has a single output and D=0.

Theorem 4.3: Counsider the system (7) and let the matrix A €
R and B e R}, C € RV, D=0. For p > 0, the following
statements are equivalent:

(a) The nonnegative LTI system (7) is asymptotically stable and
its Loo-gain is strictly less than p.

(b) The following LP is feasible: there exists a diagonal matrix Q
with positive diagonal entries such that

o T [Q(A -1) QB]lq] o

n+1 (21)

C —p

Proof: When p=1 and D=0, we can equivalently rewrite the
condition (20) as

There exists A € R”;  such that |:A EIH B_]lgj| |:)1»i| <0
22)

In (22), the matrix in the left-hand side is Metzler since A €
RY", Be R} and C € RY*". From Theorem 4.2, we can

replace the LP (22) by

There exists n € R’:gl such that nT |:A EI” B]lqi| <0.

—p

We can normalise the vector 7 in order to obtain the following
LP

T
There exists v € RZ;  such that |:11)i| [A EI" Jiﬂpq] <0.
(23)
Then, we write v = Q1, with Q = diag{v} and using the
identity
v T T Q 0
1| =t]o 1
we immediately deduce (21) from (23). [ |

We can now consider the problem of choosing the gain
matrices L, L to minimise the Ly;-gains of the error dynamics.
First, we have the following proposition.

Proposition 4.1: Let the Assumptions 2.1 and 2.2 be satisfied
and let the matrices A — LC and A — LC be nonnegative. The
Loo-gain of the system (18) with inputs W' v—v v—vT and
output & is smaller than p > 0 if there exists a diagonal matrix Q
with positive diagonal entries such that

0.

(24)
The Loo-gain of the system (19) with inputs (@ v—v v—y]T
and output & is smaller than p > 0 if there exists a diagonal
matrix Q with positive diagonal entries such that

1T QA-L—LT—-1L)0) QUAs+LT+L")
5 ® —p <

T [Q(A ~L—-(I*-170) Q@i+L1 + iﬂ}
15 _ < 0.
@ —p
(25)
Furthermore, when the conditions (24)~(25) hold, we get x, X €
L3 andsox,x € L.

Proof: By definition,wehave L =L* — L~ andL=L" — L.
Since the error systems (18)—(19) are nonnegative, we get imme-
diately the LPs (24) and (25) from (21).

Moreover, when these conditions are satisfied, the error sys-
tems (18)-(19) are stable by Theorem 4.1, and this implies that
X>X € L& since x € L2 by Proposition 2.1. ]

Optimizing over L, L can then be performed as follows.

Theorem 4.4: Let the Assumption 2.2 be satisfied. Consider the
following LPs with variables Q, Q2 € R** (diagonal matrices),



UL, U, Us, Uy € RY, and p, p € Ry,

inf 0> (26)
pULU,
st 17 [Q(é —1y) — (U —U)C Q14+ Up + Uz] <0
o P
(27)
QA — (U - U)C >0, (28)
Q14 >0, (29)
U >0, U,=>0, £>O, (30)
and
_inf 0> (31)
£-82,U3,Uy
st 1] [Q(A — L) — (Us —Uy»C QL+ U_3 + U4:| <0
X —p
(32)
QA — (U3 — Uy)C > 0, (33)
Q14 > 0, (34)
U; >0, Us>0, p>0. (35)

Then, we can compute nonnegative gains for the interval observer
(9) that minimise the Loo-gains of the error systems (18) and (19)
by taking

L= @) (Ut - U3, L*=@"H U5 - Up,
where Q*, Ut, Uy and Q*, U}, U} are respectively optimal solu-
tions of the problems (26)-(30) and (31)-(35).

Proof: The linear inequalities (27) and (32) are obtained
by substituting U; = QL*, U, = QL™ and Us = QLT, Uy =
QL™ in (24)-(25). The constraints (28) and (33) are equiva-
lent to saying that the matrices (A—LC) and (A — LC) are
nonnegative. [ |

Remark 4.1: Note that the LPs of Theorem 4.4 provide the
observer matrices L, L and the corresponding Lo,-gains at the
same time, rather than following Remark 15 in Briat and Kham-
mash (2016), which suggests to first solve the LPs for & =
11 to obtain L, L and then compute the Lyo-gain values from
Theorem 4.1.

One can solve the optimisation problems (26)-(30) and
(31)-(35) very efficiently with standard linear programming
solvers, such as MOSEK (Andersen & Andersen, 2000), which
uses interior-point methods (Nocedal & Wright, 2006), and
Matlab’s linprog or GLPK (GNU Linear Programming Kit Ref-
erence Manual, 2013), which use both interior-point meth-
ods and simplex algorithms (Nocedal & Wright, 2006). These
solvers are commonly used with interfaces allowing users to
enter the linear programmes in an intuitive form, such as AMPL
(Fourer, Gay, & Kernighan, 2003), CVX (Grant & Boyd, 2014),
or YALMIP (Lofberg, 2012).
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5. On-line outbreak detection algorithm

In this section, we use the interval observer to design an on-
line outbreak detection algorithm for the discrete-time SEIR
model (1). We aim at computing a decision rule that deter-
mines whether a disease-free equilibrium of the discrete-time
SEIR model (1) is locally asymptotically stable or not. An out-
break is detected when it can be concluded that the disease-free
equilibrium is unstable.

First, we discuss the existence and stability of equilibrium
points for the discrete-time SEIR model (1). The epidemic
model (1) has two equilibrium points: a disease-free equilib-
rium point P; = [1,0,0,0]T and an endemic equilibrium point
P, = [$*, E*, I*, R*]T (see the Appendix for details about the
computation of P; and P, as well as the formulas of S*, E*, I*
and R*). Define the following quantity

af

=— (36)
(+ ) +a)

Ro:
called the basic reproduction ratio (Alonso-Quesada et al.,
2012, 2017).

Theorem 5.1 (Ibeas et al., 2015): Under Assumption 2.1, the
disease-free equilibrium point P; = [1,0,0,0]T for the SEIR
model (1) is locally asymptotically stable if Ry < 1 and unstable
l'f'R,() > 1.

Theorem 5.1 states that Ro = 1 is a bifurcation value, with
the stability properties of the disease-free equilibrium changing
across Ry = 1. This can be used to derive conclusions about
occurrence of an epidemic. Under Assumption 2.1, solutions
of the discrete-time SEIR model (1) that start near the disease-
free equilibrium P; tend towards P; as t — oo if Rp < 1. On
the other hand, if Ry > 1, either solutions of the discrete-
time SEIR model (1) tend towards the endemic equilibrium
point P, or some of the state variables oscillate (Ibeas et al.,
2015, Theorem 3). Hence, if Ry > 1, the disease remains in
the population in a constant or oscillatory way (Ibeas et al.,
2015, Theorem 3) and the virus is able to invade the population
(Rachah & Torres, 2017, Theorem 1).

We cannot use directly Theorem 5.1 to design a decision rule
since the exact values of the parameters y, o, y, B are not known
and we have no information about the value of 8. Instead, we use
the following proposition.

Proposition 5.1: Define the following quantities, at time t > 0,
ap

$ﬁ==—?——?:%——r'—
(+y)(n+a
api

r+y)(p+a’

>

(37)

pi=1-

where the bounds é[ and f; are given by (14).

o IfS; > 0, the disease-free equilibrium is unstable, the disease
remains in the population.

e If7; > 0, solutions of the discrete-time SEIR model (1) that
start near the disease-free equilibrium Py tend towards P as
t — oQ.
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Proof: This result is an immediate consequence of Theorem 5.1
together with the bounds §; < Rg — land 7; < 1 — Ry, which
are deduced from (13). [ ]

We describe the final on-line outbreak detection decision
rule in Algorithm 5. The main purpose of this decision rule is to
provide a guarantee that Ry > 1 as soon as S; > 0. Note from
(14) that B . and hence S; is non-decreasing (for the case where
B is known to be constant), and so a decision reached at some
time ¢ cannot be contradicted at future times. The decision rule
can provide confirmation of the occurrence of an outbreak, but
since it can miss detections if the parameter bounds are conser-
vative, it is not appropriate as an early warning system. However,
the estimates provided by the interval observer (9) can still be
useful for a variety of purposes, e.g. the design of vaccination
campaigns.

Algorithm 1: On-line outbreak detection algorithm Given:
1. A nonlinear discrete-time SEIR epidemic model (1) where
the transition rates «,y,B and the natural birth rate u
are unknown time-invariant parameters and the bounds
&, Y, V> K, [ are given. 2. A set of measurement data {y;} cor-
rupted by noise and the value of the bounds 7, v. At each time
period £: §1. Compute lower and upper bounds ¢ and ¢, for the
time-varying unknown input ¢; by using (8) or (17) S2. Deter-
mine interval estimates of the four compartment populations
by using (9). S3. Compute the decision variables S; and 7; with
(37). S4. Take the decision d; by using the following rule
0 if7; > 0: solutions of the discrete-time SEIR
model (1) that start near
the disease-free equilibrium P; tend towards P;
ast — 00,
1 lfS[ >0:

the disease remains in the population,

the disease-free equilibrium is unstable,

* no decision otherwise.

Result: A sequence of decisions {d;}. Stop as soon as d; € {0, 1}.

Remark 5.1: The interval estimation approach described in
this paper can be extended to higher/lower order discrete-time
epidemic models, when the model has more/less than 4 com-
partments, such as SEIR and SIR models with several parallel
infective stages (Korobeinikov, 2009).

6. Simulations

We illustrate the performance of the proposed interval observer
with a simulated example based on the 2014 outbreak of Ebola
virus in West Africa (Rachah & Torres, 2016, 2017). The time
period corresponds to one day and the following parameter

values are considered for the SEIR model (1)-(2)
B = 0.4perday, o = 0.1887per day,
y = 0.1perday, pu = 0.0099 per day.

Consider the case in which the parameters o,y and p devi-
ate from the nominal values by 0%, where o is a given value.

0 50 100 150 200 250 300
time (days)

Figure 3. Evolution of the exposed plus infectious population s; and the observed
bounds wheno = 7.

We can then construct the matrices A and A. The output mea-
surements y; are corrupted by a noise sequence v; consisting of
independent and identically distributed random numbers sam-
pled from a uniform distribution over the interval [—V, V], with
V = 10~3. We assume here given bounds (8), with §,=ti—¢
and ¢; = ¢; + &, where ¢ = 1074, The state’s initial conditions
are given by: So = 0.88, Ey = 0.07, Iy = 0.05 and Ry = 0. Let
Xp = %o — 61 and Xy = xo + 62, with 6; = [0 0.01 0.001 0]T
and 6, = [0.05 0.03 0.002 0.05]T. To solve the optimisation
problems of Theorem 4.4, we use the YALMIP toolbox for
Matlab (Lofberg, 2012) together with the MOSEK solver.

When o = 7, by using Theorem 4.4, we obtain the optimal
interval observer gains

L*=1[0 0 08824 0.1213]7,
I*=[0 0 08978 0.1313]7,

and we get the minimum Lo, gains values p* = 7.4141 and
p* = 8.4052. It can be seen onFigure 2, where the solid lines
represent the true value of the states xx, 1 < k < 4, and the
dashed lines are used for the interval estimates x; and X, that
the interval estimates provided by (9) respect the ordering (11).
Furthermore, we can deduce from Figure 2 that the disease is
not eradicated from the population since I, > 0 at the end of
the simulation.

We simulate now the case in which V = 1072 for the mea-
surement noise, i.e. v; consists of independent and identically
distributed random numbers sampled from a uniform distribu-
tion over the interval [—1072,1072]. We see on Figure 3 that
the maximum value of the exposed plus infectious population
(st = E¢ + I;) is obtained at t = 23 days, time at which s;, whose
unknown but true value is 42.08%, is estimated by the interval
observer to be between s, = 40.3% and 5; = 44.26% of the total
population. Hence, the time t = 23 days is critical.

By using Algorithm 5, we deduce from the results of simula-
tions that Sy = 1.5413, V t > 0, which implies that the disease-
free equilibrium is unstable, and hence the disease remains in
the population. The unknown true value of the basic repro-
duction ratio R is equal to 3.4582 > 1, which implies also that
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Figure 2. Evolution of the actual state and observed bounds when o = 7. (a) Susceptible. (b) Exposed. (c) Infectious. (d) Recovered.
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Figure 4. The unknown transmission rate B and the observed bounds
wheno =7.

the the disease-free equilibrium is unstable. Moreover, (14) pro-
vides bounds for the unknown transmission rate 8 shown on
Figure 4.

For the rest of this section, we use the value V = 1072 for
simulations. Let us consider now a situation in which the value
of the parameter o is 35. By using Theorem 4.4, we obtain the

optimal interval observer gains

L*=[0 0 08516 0.0795]T,

I*=[0 0 09286 0.1291],

and we get the minimum Lo, gains values p* = 6.0389 and
p* = 11.6485. One can see on Figure 5, where the solid line rep-
resents the true value of the exposed plus infectious population
s = E; + I; and the dashed lines are used for the interval esti-
mates s, and s;, that the bounds respect the inclusion relation
§t§st§§t,\7’t2().

By using Algorithm 5, we obtain that Sy = 0.1158, V ¢ >
0, which implies that the disease-free equilibrium is unsta-
ble. Consequently, the disease remains in the population. We
conclude that the estimates of the observer for the Algorithm 5
are still useful when the parameters «, y and p deviate from the
nominal values by 35%.

Consider finally a case in which the value of the parameter
o = 70. By using Theorem 4.4, we obtain the optimal interval

observer gains

L*=[0 0 08132 0.1076]7,
I*=[0 0 0967 0.1977]",

and we get the minimum values p* = 4.9428 and p* = 24.1354.
It can be inferred from Figure 6, that the bounds on the infected
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Figure 5. Evolution of the exposed plus infectious population s; and the observed
bounds when o = 35.
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Figure 6. Evolution of the exposed plus infectious population s; and the observed
bounds when o = 70.

population produced by the observer still respect the inclusion
relation s, <'s; <'5;, Vt > 0. However, the accuracy of the esti-
mates is worse than in the previous cases.Although the true
value of Ry is greater than 1, Algorithm 5 does not allow us
to detect the outbreak because S; = —0.6752, V t > 0 remains
negative. Since the decision variable 7; = —66.0341, V t > 0
remains negative, we cannot decide that no outbreak is present
either, and hence our algorithm remains indecisive when the
parameters o, y and p deviate from the nominal values by 70%.
The Algorithm 5 is not appropriate as an early warning system
when the deviation ¢ becomes too large. Nevertheless, the esti-
mates provided by the interval observer (9) are still useful in this
case.

7. Conclusion

We have considered the problem of state-observer design and
on-line outbreak detection for a nonlinear discrete-time SEIR
epidemic model in the presence of uncertainty. The proposed

approach only requires sets of admissible values for the model’s
disturbances or uncertainties and parameters, and no informa-
tion about the bounding values of the time-varying transmis-
sion rate from the ‘susceptible’ to the ‘infected’ stage. We have
proposed a new approach for the estimation of the the four
compartments’ state, where an interval observer is used instead
of a point-wise one. We have proposed an outbreak detection
algorithm relying on the observer’s estimates. In addition, we
have computed optimal interval observer gains as solutions
of linear programming problems. We have illustrated the per-
formance of the proposed methodology in simulation. Future
research can focus on performance evaluation using real data
and interval observer design for more complex epidemiological
models.
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Appendix. Determination of the equilibrium points of
the epidemic model

We discuss here the existence and stability of equilibrium points for the
discrete-time SEIR model (1). Recall that the model (3) is nonlinear since
the unknown input ¢ is the product of two state variables. We assume that
the rates 1, &, B and y are positive constant parameters. Any equilibrium
point [S, E, I, R]" is solution of the equations

—BSI+pu—puS=0, (A1)
BSI — (u+a)E=0, (A2)
aE— (n+y)I=0, (A3)
—uR+yI=0. (A4)
By adding (A1) to (A2), we get
— E
§= —FTOEtu (A5)
m
From (A3), it follows that
E
“ (A6)

I= ,
(n+v)

while from (A4), we get

I
rR=2. (A7)
I
It can now be inferred from (A5), (A6) and (A2) that
- E
E<4M+m+éﬂ&4%iﬂg)za (A8)
ne+y)
Consequently, at an equilibrium either E=0 or
pop.o Por—puty)ute)  op  puty) (A9)
Ba(p + o) (n+a) Ba

For E=0, it follows from (A5), (A6), (A7) that S=1, I=0 and R=0,
i.e. we obtain the disease-free equilibrium P; = [1,0,0,0]T. For the other
equilibrium with E = E*, substituting (A9) in (A6), we get

. ap u

=, (A10)
w+y)u+a) B
It can be inferred from (A9) and (A5) that
S = (ﬂ+y)(u+a)_ (A1)
Ba
Finally, substituting (A9) in (A6), we obtain
*:Z<44£&47_ﬁ) (A12)
u\p+y)n+e) B

The second equilibrium point is P, = [S*, E*, I*, R*]T.
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