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Differentially Private MIMO Filtering
for Event Streams
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Abstract—Rigorous privacy-preserving mechanisms that can
process and analyze dynamic data streams in real-time are
required to encourage a wider adoption of many large-scale
monitoring and control systems recording the detailed activities
of their users, such as intelligent transportation systems, smart
grids or smart buildings. Motivated by scenarios where signals
originate from many sensors capturing privacy-sensitive events
about individuals and several statistics of interest need to be
continuously published in real-time, we consider the problem
of designing multi-input multi-output (MIMO) systems process-
ing event streams while providing certain differential privacy
guarantees on the input signals. We show how to construct and
optimize MIMO extensions of the zero-forcing mechanism, which
we previously proposed for single-input single-output systems.
Some of these extensions can take a statistical model of the
input signals into account. We illustrate our privacy-preserving
filter design methodology in two examples: privately monitoring
and forecasting occupancy in a building equipped with multiple
motion detection sensors; and analyzing the activity of a Markov
chain model of a simple shared processing server.

Index Terms—Privacy, Filtering, Estimation, Multidimensional
systems

I. INTRODUCTION

Privacy issues associated with social networking applica-
tions or monitoring and decision systems collecting personal
data to operate are receiving an increasing amount of attention
[3], [4]. Indeed, privacy concerns are causing delays or cancel-
lations in the deployment of some smart power grids, location-
based services, and various “Internet of Things” applications
[5]. In order to encourage the adoption of these systems, which
can provide important societal benefits, new tools are needed
to provide clear privacy protection guarantees and allow users
to balance utility with privacy rigorously [6].

Offering privacy guarantees for a system generally involves
sacrificing some level of performance, and evaluating the
resulting trade-offs rigorously requires a quantitative defi-
nition of privacy. Various such definitions have been pro-
posed, such as disclosure risk [7] in statistics, k-anonymity
[8], information-theoretic privacy [9], or conditions based on
observability [10], [11]. However, in the last few years the
notion of differential privacy has emerged essentially as a
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standard specification [12], [13]. Intuitively, a system process-
ing privacy-sensitive inputs from individuals is differentially
private if its published outputs are not too sensitive to the
data provided by any single participant. This definition is
naturally linked to the notion of system gain for dynamical
systems, see [14], [15]. A general concern in privacy-related
research is how to provably limit the risk of privacy breaches
caused by an adversary managing to link information pub-
lished based on a sensitive dataset with other (often publicly)
available information, as in [8], [16], [17] for example. One
operational advantage of differential privacy compared to some
other definitions is that it provides strong guarantees without
involving the difficult task of modeling all the potentially
available auxiliary information.

Differential privacy is a strong notion of privacy, but might
require large perturbations to the published results of an
analysis in order to hide individual data. This is especially
true for applications where users continuously contribute data
over time, and it is thus important to carefully design real-
time mechanisms that can limit the impact on system perfor-
mance of differential privacy requirements. Previous work on
designing differentially private mechanisms for the publication
of time series include [18], [19], but these mechanisms are
not causal and hence not suited for real-time applications.
The mechanism described in Section IV of this paper could
also be interpreted as a dynamic, causal version of the matrix
mechanism introduced in [20] for static databases. The papers
[21]–[23] describe real-time differentially private mechanisms
to approximate a few specific filters processing a stream of
0/1 variables, representing the occurence of events attributed to
individuals. For example, [21], [22] consider a private accumu-
lator providing at each time the total number of events that oc-
curred in the past. This paper is inspired by this scenario, and
builds on our previous work on this problem in [14, Section
IV] [15, Section VI]. Here we extend our analysis in particular
to multi-input multi-output (MIMO) linear time-invariant (LTI)
systems, which considerably broadens the applicability of the
scheme to more common situations where multiple sensors
monitor an environment and we wish to concurrently publish
several statistics of interest. An application example is that
of analyzing spatio-temporal records provided by networks of
simple counting sensors, e.g., motion detectors in buildings or
inductive-loop detectors in traffic information systems [24].
The literature on the differentially private processing of multi-
dimensional time series is still very limited, but includes [25],
which considers a single-input multiple-output filter where
each output channel corresponds to a moving average filter
with a different size for the averaging window, as well as
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[26], which discusses an application to traffic monitoring.
To summarize, the contributions and organization of this

paper are as follows. In Section II, we present a new generic
scenario where we need to approximate a general MIMO LTI
system by a mechanism offering differential privacy guaran-
tees for the input signals. The formal definitions necessary to
state the problem are also provided in that section. In Section
III we perform some preliminary system sensitivity calcula-
tions that are necessary in the rest of the paper. Section IV
presents a general approximation scheme for MIMO systems
that provides differential privacy guarantees for the input sig-
nals. The design methodology and performance of the privacy-
preserving filter are illustrated in Section V in the context of
a building occupancy estimation problem. Note that Sections
III-V provide a more detailed presentation of the theoretical
and simulation results contained in our conference paper [2].
Finally, Section VI presents an additional privacy-preserving
mechanism that can approximate the desired outputs more
closely but requires the second-order statistics about the input
signals to be publicly available. It extends to the MIMO case
some of the results presented in our conference paper [1]. This
section also illustrates the relationship between our problem
and certain joint transmitter-receiver optimization problems
arising in the communication systems literature [27], [28].

Notation: Throughout the paper we use the following stan-
dard abbreviations: LTI for Linear Time-Invariant, SISO for
Single-Input Single-Output, SIMO for Single-Input Multiple-
Output, and MIMO for Multiple-Input Multiple-Output. Un-
less specified otherwise, we consider discrete-time signals
starting at time 0, dynamical systems or filters are assumed
causal and (for simplicity of exposition) transfer functions
or transfer matrices G(z) =

∑∞
t=0Gtz

−t have real-valued
coefficients. We fix a base probability space (Ω,F ,P). We
denote the multivariate normal distribution with mean vector
µ and covariance matrix Σ by N (µ,Σ). For m an integer with
m ≥ 1, we write [m] := {1, . . . ,m}. The notations |x|1 =∑p
k=1 |xk| and |x|2 =

(∑p
k=1 |xk|2

)1/2
are used to denote the

1- and 2-norms in Rp or Cp, and we reserve the notation ‖ · ‖
for norms on signal and system spaces. col(x1, . . . xp) denotes
a column vector or signal with components xi, i = 1, . . . , p,
and diag(x1, . . . , xm) denotes a diagonal m×m matrix with
the xi’s on the diagonal. Finally, for H a Hermitian matrix,
H � 0 means that it is positive definite and H � 0 that it is
positive semi-definite.

II. PROBLEM STATEMENT

A. Generic Scenario

We consider m sensors detecting events, with sensor i
producing a discrete-time scalar signal {ui,t}t≥0 ∈ R, for
i ∈ [m]. In a building monitoring scenario for example,
the sensors could be motion detectors distributed at various
locations and polled at regular intervals, with ui,t ∈ N the
number of detected events reported for period t. We denote
u the resulting vector-valued signal, i.e., ut ∈ Rm. An LTI
filter F , with m inputs and p outputs, takes input signals
u from the sensors and publishes output signals y = Fu
of interest, with yt ∈ Rp. In our example, we might be

interested in continuously updating real-time estimates of the
number of people in various parts of the building, as well
as short- and medium-term occupancy forecasts, in order to
optimize the operations of the Heating, Ventilation, and Air
Conditioning (HVAC) system. The problem considered in this
paper consists in replacing the filter F by a system processing
the input u and producing a signal ŷ as close as possible
to the desired output y (minimizing for example the mean
square error limT→∞ 1

T

∑T−1
t=0 E[|yt− ŷt|22]), while providing

some privacy guarantees to the individuals whose activities
are captured by the input signals u. The privacy constraint is
explained and quantified in the next subsection.

B. Differential Privacy

As mentioned in the introduction, a differentially private
mechanism publishes data in a way that is not too sensitive
to the presence or absence of a single individual. A formal
definition of differential privacy is provided in Definition 1
below. In the previous building monitoring example, one goal
of a privacy constraint could be to provide guarantees that an
individual cannot be tracked too precisely from the published
(typically aggregate) data. Indeed, Wilson and Atkeson [29]
for example demonstrate how to track individual users in a
building using a network of simple binary sensors such as
motion detectors.

1) Adjacency Relation: Formally, we start by defining a
symmetric binary relation, denoted Adj, on the space D of
datasets of interest, which captures what it means for two
datasets to differ by the data of a single individual. Essentially,
it is hard to determine from a differentially private output
which of any two adjacent input datasets was used. Here,
D := {u : N 7→ Rm} is the set of input signals, and we have
Adj(u, u′) if and only if we can obtain the signal u′ from u
by adding or subtracting the events corresponding to just one
user. Motivated again by applications to spatial monitoring,
we consider in this paper the following adjacency relation

Adj(u, u′) iff (1)
∀i ∈ [m],∃ti ∈ N, αi ∈ R, s.t. u′i − ui = αiδti , |αi| ≤ ki,

parametrized by a vector k ∈ Rm with components ki > 0.
According to (1), we wish to make it hard to detect deviations
on each input signal component at any single time period (here
δti denotes the discrete impulse signal with impulse at ti), and
by at most ki. Let ei ∈ Rm be the ith standard basis vector,
i.e., with coordinates eij = δij , j = 1, . . . ,m. Then for two
adjacent signals u, u′, we have with the notation in (1)

u′ − u =
m∑
i=1

αiδtiei. (2)

Note in passing that we could place additional constraints on
k to capture additional knowledge about the problem, which
can help design mechanisms with better performance, as we
discuss later. For example, if we know that a given person can
activate at most l < m sensor and each ki is 1, we can add
the constraint |k|1 ≤ l.

The adjacency relation (1) extends the one considered
in [15], [21]–[23] to the case of multiple input signals. It
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places two constraints on the influence that an individual can
have on the input data in order for our differentially private
mechanisms to offer him guarantees. First, any given sensor
can report an event due to the presence of the individual only
once over the time interval of interest for our analysis. This is
a sensible constraint in applications such as traffic monitoring
with fixed motion detectors activated only once by each car
traveling along a road, certain location-based services where
a customer would check-in say at most once per day at each
visited store, or certain health-monitoring applications where
an individual would report a sickness or visit the emergency
room only once. For a building monitoring scenario however,
a single user could trigger the same motion detector several
times over a relatively short period. A first solution to this issue
consists in splitting the data stream of problematic sensors into
several successive intervals, each considered as the signal from
a new virtual sensor, so that an individual’s data is present
only once in each interval. A MIMO mechanism can then
process such data and offer guarantees, addressing one of the
main issues for the applicability of the model proposed in [21],
[22]. However, increasing the number of inputs degrades the
privacy guarantees or the output quality that we can provide.
Hence in general no privacy guarantee will be offered to
users who activate the same sensor too frequently. The second
constraint imposed by (1) is that we bound the magnitude
of an individual’s contribution by ki, but this is not really
problematic in applications such as motion detection, where
we can typically take ki = 1.

2) Definition of Differential Privacy: Mechanisms that are
differentially private [12], [30], [31, Definition 2.4] necessarily
randomize their outputs, in such a way that they satisfy the
property of Definition 1 below. Following these references, the
term “mechanism” here simply refers to a randomized map M
from some input space D of datasets to some output space R
of published results. So for d ∈ D, M(d, ·) is a measurable
map from our sample space Ω to R. We follow however the
standard practice of omitting the argument ω ∈ Ω when we
denote the random variable M(d).

Definition 1. Let D be a space equipped with a symmetric
binary relation denoted Adj, and let (R,M) be a measurable
space. Let ε, δ ≥ 0. A mechanism M : D × Ω → R is (ε, δ)-
differentially private for Adj (andM) if for all d, d′ ∈ D such
that Adj(d, d′), we have

P(M(d) ∈ S) ≤ eεP(M(d′) ∈ S) + δ, ∀S ∈M. (3)

If δ = 0, the mechanism is said to be ε-differentially private.

This definition quantifies the allowed deviation for the
output distribution of a differentially private mechanism, given
any two adjacent input datasets d and d′. One can also show
that it is impossible to design a statistical test with small
error to decide if d or d′ was used by a differentially private
mechanism to produce its output [32], [33]. In this paper, the
space D was defined as the space of input signals, and the
adjacency relation considered is (1). The output space R is
the space of output signals R := {y : N → Rp}. Finally,
a differentially private mechanism will consist of a system
approximating our MIMO filter of interest F , as well as a

source of noise necessary to randomize the outputs and satisfy
(3). We also refer the reader to [14], [15] for a technical
discussion on the (standard) σ-algebra M used on the output
signal space to offer useful guarantees.

3) Sensitivity: Enforcing differential privacy can be done
by randomly perturbing the published output of a system,
at the price of reducing its utility or quality. Hence, we are
interested in evaluating as precisely as possible the amount of
noise necessary to make a mechanism differentially private.
For this purpose, the following quantity plays an important
role.

Definition 2. The `2-sensitivity of a system G with m inputs
and p outputs with respect to the adjacency relation Adj
is defined by ∆m,p

2 G := supAdj(u,u’) ‖Gu − Gu′‖2, where

‖Gv‖2 =
√∑∞

t=−∞ |(Gv)t|22.

4) A Basic Differentially Private Mechanism: The basic
mechanism of Theorem 1 below (see [15]), extending [30],
can be used to answer queries in a differentially private way.
To present the result, we recall first the definition of the Q-
function Q(x) := 1√

2π

∫∞
x
e−

u2

2 du. Now for ε, δ > 0, let
ξ = Q−1(δ) and define κδ,ε = 1

2ε (ξ +
√
ξ2 + 2ε).

Theorem 1. Let G be a system with m inputs, p outputs,
and with `2-sensitivity ∆m,p

2 G with respect to an adjacency
relation Adj. Then the mechanism M(u) = Gu+ w is (ε, δ)-
differentially private with respect to Adj if w = {wt}t≥0 is a
p-dimensional Gaussian white noise, with wt ∼ N (0, σ2Ip)
for σ ≥ κδ,ε ×∆m,p

2 G.

Proof: Let u and u′ be adjacent signals. For all T ≥ 0,
we have √√√√ T∑

t=0

|(Gu)t − (Gu′)t|22 ≤ ∆m,p
2 G,

which implies by [15, Theorem 3] that releasing the sequence
(M(u))0:T is (ε, δ)-differentially private, for any T ≥ 0. The
result is then a consequence of [15, Lemma 2].

The mechanism M described in Theorem 1, which provides
a differentially-private version of a system G, is called an
output-perturbation mechanism. We see that the amount of
noise sufficient for differential privacy with this mechanism
is proportional to the `2-sensitivity of the filter and to κδ,ε,
which can be shown to behave roughly as O(ln(1/δ))1/2/ε.
Note that we add noise proportional to the sensitivity of the
whole filter G independently on each output channel, even
if G were diagonal say, otherwise trivial attacks that simply
average a sufficient number of outputs could potentially detect
the presence of an individual with high probability [15].

In conclusion we could obtain a differentially private mech-
anism for our original problem by simply adding a sufficient
amount of noise to the output of our desired filter F , provided
we can compute its sensitivity, which is the topic of the
next section. However, it is possible in general to design
mechanisms with much less overall noise than this output-
perturbation scheme, as discussed in Sections IV and VI.
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III. SENSITIVITY CALCULATIONS

For the following sensitivity calculations (see Definition 2),
the H2 norm of an LTI system plays an important role. We
recall its definition for a system G with m inputs

‖G‖22 =
m∑
i=1

‖Gδ0ei‖22 =
1

2π

∫ π

−π
Tr(G(ejω)∗G(ejω))dω.

Writing G(z) = [Gij(z)]i,j for the p×m transfer matrix, we
also note that ‖G‖22 =

∑
i,j ‖Gij‖22.

A. Exact solutions for the SIMO and Diagonal Cases

Generalizing the SISO scenario considered in [14], [15] to
the case of a SIMO system, we have immediately the following
theorem.

Theorem 2 (SIMO LTI system). Let G be an LTI system
with one input, p outputs and such that ‖G‖2 < ∞. For the
adjacency relation (1), we have ∆1,p

2 G = k1‖G‖2.

Proof: For u and u′ adjacent

‖G(u− u′)‖22 = |α1|2‖Gδt1‖22 ≤ k21‖G‖22,

and the bound is attained if |α1| = k1.
For a system G with multiple inputs, the special case

where G is diagonal, i.e., its transfer matrix is G(z) =
diag(G11(z), . . . , Gmm(z)), also leads to a simple sensitivity
result. Note that in this case, we have ‖G‖22 =

∑m
i=1 ‖Gii‖22.

Theorem 3 (Diagonal LTI system). Let G be a diagonal LTI
system with m inputs and outputs, such that ‖G‖2 <∞. For
the adjacency relation (1), denoting K = diag(k1, . . . , km),
we have

∆m,m
2 G = ‖GK‖2 =

(
m∑
i=1

‖kiGii‖22

)1/2

.

Proof: If G is diagonal, then for u and u’ adjacent, we
have from (2)

‖G(u− u′)‖22 =

∥∥∥∥∥
m∑
i=1

αiGδtiei

∥∥∥∥∥
2

2

= ‖col(α1g11 ∗ δt1 , . . . , αmgmm ∗ δtm)‖22,

where gii denotes the impulse response of Gii. Hence

‖G(u− u′)‖22 =
m∑
i=1

‖αigii ∗ δti‖22

=
m∑
i=1

|αi|2‖Gii‖22,

and |αi| ≤ ki, for all i. Again the bound is attained if |αi| = ki
for all i.

B. Upper and Lower Bound for the general MIMO Case

For MISO or general MIMO systems, the sensitivity calcu-
lations are no longer so straightforward, because the impulses
on the various input channels, obtained from the difference
of two adjacent signals u, u′, all possibly influence any given
output. Still, the following result provides simple bounds on
the sensitivity.

Theorem 4. Let G be an LTI system with m inputs, p outputs
and such that ‖G‖2 < ∞. For the adjacency relation (1),
denoting K = diag(k1, . . . , km) and |k|2 =

(∑m
i=1 k

2
i

)1/2
,

we have

‖GK‖2 ≤ ∆m,p
2 G ≤ |k|2‖G‖2. (4)

Proof: We have G(u − u′) =
∑m
i=1 αiGδtiei, and

moreover ‖G‖22 =
∑m
i=1 ‖Gδtiei‖22 by definition. For the

upper bound, we can write

‖G(u− u′)‖2 =

∥∥∥∥∥
m∑
i=1

αiGδtiei

∥∥∥∥∥
2

≤
m∑
i=1

|αi|‖Gδtiei‖2

≤ |k|2

(
m∑
i=1

‖Gδtiei‖22

)1/2

,

where the last inequality results from the Cauchy-Schwarz
inequality.

For the lower bound, let us first take u′ ≡ 0. Then consider
an adjacent signal u with a single discrete impulse of height
ki at time ti on each input channel i, for i = 1, . . . ,m, with
t1 < t2 < . . . < tm. Let η > 0. Denote the “columns” of
G as Gi for i = 1, . . . ,m, i.e., Gu =

∑m
i=1Giui. Since

‖G‖2 < ∞, ‖Giui‖2 < ∞, and hence |(Giui)t| → 0 as
t → ∞. Hence by taking ti+1 − ti large enough for each
1 ≤ i ≤ m − 1, i.e., waiting for the effect of impulse i on
the output to be sufficiently small, we can choose the signal
u such that

‖Gu‖22 =

∥∥∥∥∥
m∑
i=1

Giui

∥∥∥∥∥
2

2

≥
m∑
i=1

k2i ‖Gδtiei‖22 − η.

Since this is true for any η > 0 and ‖Gδtiei‖22 = ‖Gi‖22, we
get (∆m,p

2 G)2 ≥ ‖GK‖22 =
∑m
i=1 k

2
i ‖Gi‖22.

Note that if k1 = . . . = km, the upper bound on the
sensitivity is k1‖G‖2

√
m. We can compare this bound to the

situation where G is diagonal, in which case the sensitivity
is exactly k1‖G‖2 from Theorem 3. The following example
shows that the upper bound of Theorem 4 cannot be improved
for the general MISO or MIMO case.

Example 1. Consider the MISO system G(z) =
[G11(z), . . . , G1m(z)], with g1i = δτi the impulse response
of G1i, for some times τ1, . . . , τm. Then ‖G‖22 = m. Now
let u′ ≡ 0 and u =

∑m
i=1 δtiei, so that u and u′ are adjacent,

with k1 = . . . = km = 1, and moreover let us choose the
times ti such that τi + ti is a constant, i.e., take ti = κ − τi
for some κ ≥ maxi{τi}. Then Gu =

∑m
i=1 g1i ∗ ui = mδκ,

and so ‖Gu‖22 = m2. This shows that the upper bound
of Theorem 4 is tight in this case. Note that this happens
because all the events of the signal u influence the output at
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the same time. Indeed, if the times τi + ti are all distinct,
then we get ‖Gu‖22 = m.

C. Exact solution for the MIMO Case

For completeness, we give in this subsection an exact
expression for the sensitivity of a general finite-dimensional
MIMO LTI filter. Let G be a stable finite-dimensional LTI
system with m inputs, p outputs and state space representation

xt+1 = Axt +But (5)
yt = Cxt +Dut,

with x0 = 0. Recall the definition of the observability Gramian
P0, which is the unique positive semi-definite solution of the
equation

ATP0A− P0 + CTC = 0.

Let Bi, Di be the ith column of the matrix B and D respec-
tively, for i = 1, . . . ,m. Finally, define for i, j ∈ {1, . . . ,m},
i 6= j, and τ in Z

Sτij = (6)
BTi (Aτ−1)TCTDj +BTi (Aτ )TP0Bj , if τ > 0

DT
i Dj +BTi P0Bj , if τ = 0

DT
i CA

|τ |−1Bj +BTi P0A
|τ |Bj , if τ < 0.

Theorem 5. Let G be a stable finite-dimensional LTI system
with m inputs, p outputs and state space representation (5).
Then, for the adjacency relation (1), we have

(∆m,p
2 G)2 = ‖GK‖22 +

m∑
i,j=1
i6=j

kikj

(
sup
τ∈Z

∣∣Sτij∣∣) . (7)

Proof: In view of (2), we have

∆m,p
2 G = sup

|αi|≤ki,ti≥0

∥∥∥∥∥
m∑
i=1

αiGδtiei

∥∥∥∥∥
2

.

For yi = Gδtiei and y =
∑m
i=1 αiyi, we have

‖y‖22 =
∞∑
t=0

∣∣∣∣∣
m∑
i=1

αiyi,t

∣∣∣∣∣
2

=
∞∑
t=0

m∑
i=1

α2
i |yi,t|2 +

∞∑
t=0

m∑
i,j=1
i6=j

αiαjy
T
i,tyj,t

≤ ‖GK‖22 +
m∑

i,j=1
i6=j

kikj

∣∣∣∣∣
∞∑
t=0

yTi,tyj,t

∣∣∣∣∣ ,
where K = diag(k1, . . . , km) and the bound can be attained
by taking αi ∈ {−ki, ki}, depending on the sign of Sti,tjij :=∑∞
t=0 y

T
i,tyj,t.

Next, we derive the more explicit expression for the second
term S

ti,tj
ij , given in the theorem. First,

yi,t =


0, t < ti,

Di, t = ti

CAt−ti−1Bi, t > ti.

Then if ti = tj , we find that

S
ti,tj
ij = DT

i Dj +BTi P0Bj ,

with P0 =
∑∞
t=0(At)TCTCAt the observability Gramian. If

ti < tj , then

S
ti,tj
ij = BTi (Atj−ti−1)TCTDj +BTi (Atj−ti)TP0Bj .

The case ti > tj is symmetric. Hence we find that Sti,tjij

depends only on the difference τ = ti − tj , and our notation
(6) corresponds to Sτij := Sti,ti+τij .

In (7), the maximization over inter-event times τ still needs
to be performed and depends on the parameters of the specific
system G. This result could be used to evaluate carefully
the amount of noise necessary in an output perturbation
mechanism, but unfortunately it seems too unwieldy at this
point to be used in more advanced mechanism optimization
schemes, such as the ones discussed in the next sections.

Still, the expression (7) provides some intuition about the
way the system dynamics influence its sensitivity. In particular,
the second term in (7) can give insight into the gap between
the sensitivity and the lower bound in (4). Note from the
expression of Sτij in (6) that one way to decrease the sensitivity
of G is to increase sufficiently the required time |ti − tj |
between the events contributed by a single user, in order for
‖A|ti−tj |‖2 to be small enough. Hence, a lower bound on
inter-event times in different streams could be introduced in
the adjacency relation to reduce a system’s sensitivity. This
would weaken the differential privacy guarantee but help in
the design of mechanisms with better performance. Another
possibility would be to have a privacy-preserving mechanism
simply ignore events from a given user as long as the lower
bound on inter-event times is not reached.

IV. ZERO-FORCING MIMO MECHANISMS

Using the sensitivity calculations of Section III, we can
now design differentially private mechanisms to approximate
a given filter F , as discussed in Section II-A. The mechanisms
described below generalize to the MIMO case some ideas
introduced in [14]. The general approximation architecture
considered is described on Fig. 1, with the filters G and H
to design. Following Theorem 1, by introducing a Gaussian
white noise signal w with variance (κδ,ε ∆2G)2I , the signal
v is made differentially private. The signal ŷ computed from
v is differentially private no matter what the system H is, see
[15, Theorem 1]. We then construct G and H to minimize the
Mean Square Error (MSE) between y and ŷ

emse(G,H) = lim
T→∞

1

T

T−1∑
t=0

E
[
|yt − ŷt|22

]
. (8)

In this section, we fix the system H to be of the form
H = FL, with L a left inverse of the pre-filter G, i.e., such
that L(z)G(z) = Im, assuming such an L exists. We call
the resulting mechanisms Zero-Forcing Equalization (ZFE)
mechanisms, and we denote eZFEmse (G,L) := emse(G,H) in
this case. It was shown in [14] for the SISO case that this
setup allows significant performance improvements compared
to the output-perturbation mechanism. The latter is recovered
when G = F and H is the identity.
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Fig. 1. Approximation setup for differentially private filtering. w is a noise
signal guaranteeing that v and hence ŷ are differentially private signals.

A. SIMO system approximation

First, let us assume that F on Fig. 1 is a SIMO filter, with
p outputs. Hence for all ω, F (ejω) is a complex-valued p-
dimensional vector. The next theorem gives a condition on
the optimal filters G and L minimizing (8) for the ZFE
architecture described above, which allows us to construct
them, and shows that one can take these optimal ZFE filters
to be SISO.

Theorem 6. Let F be a SIMO LTI system with ‖F‖2 < ∞.
For any SIMO LTI system G such that ‖G‖2 < ∞ and with
a left-inverse L, we have

eZFEmse (G,L) ≥ k21κ2δ,ε
(

1

2π

∫ π

−π
|F (ejω)|2 dω

)2

. (9)

Suppose moreover that F satisfies the Paley-Wiener condition
1
2π

∫ π
−π ln |F (ejω)|2 dω > −∞. Then there exists a SISO LTI

system G with causal inverse L such that ‖G‖2 <∞,

|G(ejω)|2 = |F (ejω)|2 for almost every ω ∈ [−π, π), (10)

and any such G,L achieves the lower bound (9) and satisfies
‖G‖2 = ‖FL‖2.

Theorem 6 generalizes [15, Theorem 8] to the SIMO case.
Finding G SISO satisfying (10), ‖G‖2 < ∞ and with causal
inverse L = G−1 is a classical spectral factorization problem,
see [34] for example for more details on how to construct G
from this frequency-domain condition.

Proof: Consider a first stage G(z) =
col(G1(z), . . . , Gq(z)) with ‖G‖2 < ∞, taking the input
signal u and producing q intermediate outputs that must be
perturbed, for some q ≥ 1. The second stage is H = FL, with
L(z) = [L1(z), . . . , Lq(z)] satisfying

∑q
i=1 Li(z)Gi(z) = 1.

Let us also define the transfer functions Mi, i = 1, . . . , q,
such that Mi(z) = Li(z

−1), hence Mi(e
jω) = Li(e

jω)∗, and
thus in particular

|Mi(e
jω)|2 = |Li(ejω)|2, i = 1, . . . , q, (11)

and
q∑
i=1

Mi(e
jω)∗Gi(e

jω) = 1. (12)

From Theorem 2, the sensitivity of the first stage for input
signals that are adjacent according to (1) is k1‖G‖2. Hence,
according to Theorem 1, adding a white Gaussian noise w
to the output of G with covariance matrix k21κ

2
δ,ε‖G‖22Iq is

sufficient to ensure that the signal v on Fig. 1 is differentially
private. The MSE for this mechanism can be expressed as

eZFEmse (G,L) = lim
T→∞

1

T

T−1∑
t=0

E
[
|(Fu)t − (FL(Gu+ w))t|22

]
eZFEmse (G,L) = lim

T→∞
1

T

T−1∑
t=0

E
[
|(FLw)t|22

]
eZFEmse (G,L) = k21κ

2
δ,ε‖G‖22‖FL‖22,

using the fact that w is white Gaussian noise and a property
of the H2 norm. We are thus led to consider the minimization
of ‖FL‖22‖G‖22 over the pre-filters G such that ‖G‖2 < ∞
and ‖FL‖2 <∞. We have

‖FL‖22‖G‖22

=
1

2π

∫ π

−π
Tr(L∗(ejω)F ∗(ejω)F (ejω)L(ejω))dω×

1

2π

∫ π

−π
Tr(G∗(ejω)G(ejω))dω

=
1

2π

∫ π

−π
|F (ejω)|22 |L(ejω)|22dω ×

1

2π

∫ π

−π
|G(ejω)|22dω

=
1

2π

∫ π

−π
|F (ejω)|22 |M(ejω)|22dω ×

1

2π

∫ π

−π
|G(ejω)|22dω,

where in the last equality we used (11).
Now consider the inner product 〈f, g〉 =

1
2π

∫ π
−π f(ejω)∗g(ejω)dω on the space of 2π-periodic

functions with values in Cq . By the Cauchy-Schwarz
inequality for this inner product applied to the functions
ω 7→ |F (ejω)|2M(ejω) and ω 7→ G(ejω), we obtain the
following bound

‖FL‖22‖G‖22 ≥(
1

2π

∫ π

−π
|F (ejω)|2

q∑
i=1

M∗i (ejω)Gi(e
jω)dω

)2

,

i.e., using (12),

‖FL‖22‖G‖22 ≥
(

1

2π

∫ π

−π
|F (ejω)|2 dω

)2

.

Also, the two sides in the Cauchy-Schwarz inequality are
equal, i.e., the bound is attained, if

G(ejω) = |F (ejω)|2M(ejω). (13)

Note that this condition does not depend on q. Hence we
can simply take q = 1 and multiply (13) by G(ejω)∗ to
get |G(ejω)|2 = |F (ejω)|2, which is (10). Since |F (ejω)|2
is an nonnegative function on the unit circle, integrable on
[−π, π] (consequence of ‖F‖2 <∞), if it satisfies the Paley-
Wiener condition, it has indeed a (minimum phase) spectral
factor G with causal inverse satisfying (10) almost everywhere
[34, p. 199]. Finally, ‖FL‖2 = ‖G‖2 is a straightforward
consequence of the stronger condition (10).
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Fig. 2. (Suboptimal) ZFE mechanism for a MIMO system Fu =∑m
i=1 Fiui, and a diagonal pre-filter G(z) = diag(G11(z), . . . , Gmm(z)).

Here Fi(z) is a p× 1 transfer matrix, for i = 1, . . . ,m.

B. MIMO system approximation

Let us now assume that F has m > 1 inputs. We write
F (z) = [F1(z), . . . , Fm(z)], with Fi a p × 1 transfer matrix.
In this case, in view of the complicated expression (7) for the
sensitivity of a MIMO filter, we only provide a subpotimal
ZFE mechanism, together with an estimate of the gap between
the performance of our mechanism and that of the optimal ZFE
mechanism.

1) Diagonal Pre-filter Optimization: The idea is to restrict
our design to pre-filters G that are m × m and diagonal,
with squared sensitivity equal to (∆m,m

2 G)2 = ‖GK‖22 =∑m
i=1 ‖kiGii‖22, where K = diag(k1, . . . , km), according to

Theorem 3. We then consider the architecture shown on Fig. 2,
where the signal w is a white Gaussian noise with covariance
matrix κ2δ,ε‖GK‖22Im, making the signals Giiui + wi, i =
1, . . . ,m, differentially private. The problem of optimizing
the pre-filters Gii can then be seen as designing m SIMO
mechanisms.

Theorem 7. Let F = [F1, . . . , Fm] be a MIMO LTI system
with ‖F‖2 < ∞. For any diagonal LTI system G(z) =
diag(G11(z), . . . , Gmm(z)) such that ‖G‖2 <∞, with inverse
L, we have

eZFEmse (G,L) ≥ κ2δ,ε

(
1

2π

∫ π

−π

m∑
i=1

ki|Fi(ejω)|2 dω

)2

. (14)

If moreover each Fi satisfies the Paley-Wiener condition
1
2π

∫ π
−π ln |Fi(ejω)|2 dω > −∞, this lower bound is attained

by some systems Gii with causal inverses G−1ii , such that
‖kiGii‖2 = ‖FiG−1ii ‖2 <∞ and |Gii(ejω)|2 = 1

ki
|Fi(ejω)|2,

for almost every ω ∈ [−π, π).

In other words, the best diagonal pre-filter for the MIMO
ZFE mechanism can be obtained from m spectral factoriza-
tions of the functions ω 7→ 1

ki
|Fi(ejω)|2, i = 1, . . . ,m.

Proof: Following the same reasoning as in the proof of
Theorem 6, the MSE for the mechanism of Fig. 2 can be
expressed as

eZFEmse (G) = κ2δ,ε‖GK‖22‖FG−1‖22, (15)

with G−1(z) = diag(G11(z)−1, . . . , Gmm(z)−1), assum-
ing that the inverses exist. Now remark that ‖FG−1‖22 =

1
2π

∫ π
−π
∑m
i=1

|Fi(ejω)|22
|Gii(ejω)|2 dω. Hence from the Cauchy-Schwarz

inequality again, we obtain the lower bound

eZFEmse (G) ≥ κ2δ,ε

(
1

2π

∫ π

−π

m∑
i=1

|Fi(ejω)|2
|Gii(ejω)|

|kiGii(ejω)|dω

)2

eZFEmse (G) ≥ κ2δ,ε

(
1

2π

∫ π

−π

m∑
i=1

ki|Fi(ejω)|2 dω

)2

,

and this bound is attained if ki|Gii(ejω)| = |Fi(ejω)|2
|Gii(ejω)| , i.e.,

ki|Gii(ejω)|2 = |Fi(ejω)|2, for i = 1, . . . ,m.

Remark 1. Note that the integrand on the right-hand side of
(14) can be written

m∑
i=1

ki|Fi(ejω)|2 := ‖F (ejω)K‖2,1,

where ‖ · ‖2,1 is the so-called L2,1 or R1 matrix norm, and
appears in [35] for example.

2) Comparison with Non-Diagonal Pre-filters: For F a
general MIMO system, it is possible that we could achieve
a better performance with a ZFE mechanism where G is
not diagonal, i.e., by combining the inputs before adding the
privacy-preserving noise. To provide a better understanding of
how much could potentially be gained by carrying out this
more involved optimization over general pre-filters G rather
than just diagonal pre-filters, the following theorem provides a
lower bound on the MSE achievable by any ZFE mechanism.

Theorem 8. Let F = [F1, . . . , Fm] be a MIMO LTI system
with ‖F‖2 < ∞. For any m × m LTI system G such that
‖G‖2 < ∞, with left inverse L such that ‖FL‖2 < ∞, we
have

eZFEmse (G,L) ≥ κ2δ,ε
(

1

2π

∫ π

−π
‖F (ejω)K‖∗dω

)2

, (16)

where ‖F (ejω)K‖∗ denotes the nuclear norm (i.e., sum of
singular values) of the matrix F (ejω)K.

The lower bound (16) on the MSE achievable with a general
pre-filter in a ZFE mechanism should be compared to the
performance (14) that can actually be achieved with diagonal
pre-filters. Note that these bounds coı̈ncide for m = 1. For
m > 1, the gap depends on the difference between the
integrals of the L2,1 norm and the nuclear norm of F (ejω)K,
see Fig. 7 for an illustration.

Proof: With K = diag(k1, . . . , km) as usual, we define
Ğ = GK and L̆ = K−1L, so that L̆Ğ = I . Let F̆ = FK.
With the lower bound of Theorem 4, designing a ZFE mech-
anism based on sensitivity as above would require adding a
noise with variance at least κ2δ,ε‖Ğ‖22. This would lead to an
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Figure 3: The floor plan of the experimental area. O�ces are mostly on the
outside of the building. The areas observed by sensors (shaded) are hallways,
lobbies, and meeting rooms.

0118.txt.gz May 24 05:46:40 2007 – Jul 2 15:41:50 2007

The filename refers to the high-order bits of the timestamps on the data
contained in each file.

The files contain data like this:

470 01179980510828 01179980511853 1.0

469 01179980512169 01179980513193 1.0

467 01179980513580 01179980514609 1.0

468 01179980514573 01179980515598 1.0

The first element is the sensor identification number. The second and third
numbers are the timestamps of the beginning of the event. The fourth number
is a meaningless place holder value.

The map in Figure 3 depicts the test area. Executives and administrators
occupy the wing on the right right side of the eighth floor map. Researchers
occupy the bottom and left wings, and most of the 7th floor. The central core
of the building contains restrooms, lobbies, elevators, and on the eighth floor,
the mail room and the kitchen. There are several stairwells that connect the
floors.

We have been collecting data at this facility since October of 2005. Data
from the entire area depicted on that map has been continuously recorded since
March 2006. The system generates approximately two million motion detections
per month.

MERL-TR2007-069 November 2007

a) b) c)

Fig. 9. Selected frames of the videos from the clip bin. The clips demonstrate automatic handover and tracking mechanisms.

Fig. 10. Example of crowd movement during a fire drill.

dataset is interesting because it contains significant structures that exist
across these visualizations. As people move through the building they
create a spatio-temporal trace of motion activations. When they pass
by or interact with other individuals their traces become tangled into
a spatio-temporal graph of possibilities. In this section we show how
the use of these graphs helps an operator quickly untangle these trace
relationships and find all video- and sensor-based evidence relating to
an individual occupant of the space.

6.1 Human-guided tracking
In this section we present the principles and challenges of information
visualization used in the tracking module of our system. The technical
background of track composition and analysis technique that we use
here can be found in our earlier paper [6].
Due to the impoverished nature of the motion sensors, it is not pos-

sible to unambiguously track individuals through a building if they
cross paths or otherwise interact with other individuals in the space. A
massive crowd would generate an overwhelming mass of ambiguity,
such as during a fire evacuation as depicted in Figure 10. However,
the much more common case is that each individual interacts with a
few others to create webs of ambiguity, such as those represented by
the graph in Figure 11.
These graphs are constructed from nodes of ambiguity connected

by unambiguous spatio-temporal traces called tracklets. The tracklets
are depicted on the map as distinct lines tracing an unambiguous path
through the space, as seen in Figure 13. At any moment there may be
multiple tracklets under consideration: a series of selected tracks and
several possible future continuations. These tracklets are distinguished
from one another in several ways. First, each tracklet is coded with a
unique color. Second, as is apparent in Figure 13, the tracklets are as-
signed spatially distinct channels on the map to reduce the possibility
of overlap and improve the intelligibility of the display.
Finally, although tracklets may traverse a common space with other

tracklets, they may do so in different directions and different times.

Start

Join

Split

End

Start

Join

Split

End

Fig. 11. Tracklet graph representation of the track bundle. Each edge,
called a Tracklet, represents a contiguous sequence of sensor activa-
tions, while nodes represent ambiguities and endpoints.

Fig. 13. Tracklet display. In order to achieve the pre-attentive assess-
ment of the multitude of tracks and direction of motion we chose an
asymmetric swell as a direction cue.

This temporal component is shown with an asymmetric swell that
communicates both the direction and the current location of the in-
dividual. In Figure 13 we see that that the orange tracklet is active and
the person is moving toward the right, while the blue and cyan tracks
are currently not active.
As above, control over the temporal aspect of the visualization oc-

curs in the timeline window. Scrubbing the time marker over the time-
line simultaneously animates the swell of the tracklets on the map.
This provides a very fluid mechanism of interaction with various track-
lets over time.
The forensic surveillance system shown in Figure 14 allows the op-

erator to build a story about the movements of a particular individual,
presumably in response to an alarm or other event. In order to recover
an unambiguous track of a particular person, the human has to tra-
verse the graph and resolve all the ambiguities, selecting the correct
continuation at each node.
The system supports this task by helping the operator navigate

through space and time to quickly inspect each ambiguity, providing

Fig. 3. Left: plan of one of the two floors in the MERL building used for the
sensor network experiment [38]. The shaded areas are hallways, lobbies and
meeting rooms equipped with binary motion detection sensors, placed a few
meters apart and recording events roughly every second. Right: a figure taken
from [37] shows a visualisation of a crowd movement during a fire drill.

MSE at least equal to κ2δ,ε‖Ğ‖22‖F̆ L̆‖22. Now note that

‖F̆ L̆‖22 =
1

2π

∫ π

−π
Tr(F̆ (ejω)L̆(ejω)L̆(ejω)∗F̆ (ejω)∗)dω

=
1

2π

∫ π

−π
Tr(F̆ (ejω)∗F̆ (ejω)L̆(ejω)L̆(ejω)∗)dω

=
1

2π

∫ π

−π
Tr(A(ejω)2L̆(ejω)L̆(ejω)∗)dω

=
1

2π

∫ π

−π
Tr(A(ejω)L̆(ejω)L̆(ejω)∗A(ejω))dω,

where for all ω, A(ejω) is the unique Hermitian positive-
semidefinite square root of F̆ (ejω)∗F̆ (ejω), i.e., A(ejω)2 =
F̆ (ejω)∗F̆ (ejω) [36, Theorem 7.2.6]. Then, once again from
the Cauchy-Schwarz inequality, now for the inner product
〈M,N〉 = 1

2π

∫ π
−π Tr(M(ejω)∗N(ejω))dω,

‖GK‖22 ‖FL‖22 = ‖Ğ‖22‖F̆ L̆‖22

=

[
1

2π

∫ π

−π
Tr(Ğ(ejω)∗Ğ(ejω))dω

]
×

[
1

2π

∫ π

−π
Tr(A(ejω)L̆(ejω)L̆(ejω)∗A(ejω))dω

]

≥
(

1

2π

∫ π

−π
Tr(A(ejω)L̆(ejω)Ğ(ejω))dω

)2

and so eZFEmse (G) ≥ κ2δ,ε
(

1

2π

∫ π

−π
‖F (ejω)K‖∗dω

)2

,

where ‖F (ejω)K‖∗ = Tr(A(ejω)) denotes the nuclear norm
of the matrix F (ejω)K.

V. APPLICATION TO PRIVACY-PRESERVING ESTIMATION
OF BUILDING OCCUPANCY

In this section we illustrate the design process and the
performance of the ZFE mechanism in the context of an ap-
plication to filtering and forecasting occupancy-related events
in an office building equipped with motion detection sensors.
As mentioned in Section II-B, such sensor networks raise
privacy concerns since some occupants could potentially be
tracked from the published information, especially when it
is correlated with public information such as the location of
their office. Since the amount of private information leakage

depends on the output signals the system aims to generate,
we adjust the privacy-preserving noise level based on the filter
specification using the ZFE mechanism. As an example, we
simulate the outputs of a 3×15 MIMO filter processing input
signals collected during a sensor network experiment carried
out at the Mitsubishi Electric Research Laboratories (MERL),
described in [38] and on Fig. 3. We refer the reader to [37]
for examples of identification of individual trajectories from
this dataset.

The original dataset contains the traces of 213 sensors
placed a few meters apart and spread over two floors of
a building, where each sensor recorded with millisecond
accuracy over a year the exact times at which they detected
some motion. For illustration purposes we downsampled the
dataset in space and time, summing all the events recorded
by several sufficiently close sensors over 3 minute intervals.
From this step, we obtained 15 input signals ui, i = 1, . . . , 15,
corresponding to 15 spatial zones (each zone covered by
a cluster of about 14 sensors), with a discrete-time period
corresponding to 3 minutes and where ui,t is the number of
events detected by all the sensors in zone i during period t.
Let us assume say that during a given discrete-time period, a
single individual can activate at most 4 sensors in any zone,
hence ki = 4 for 1 ≤ i ≤ 15. Moreover, we need to assume
that a single individual only activates the sensors in a given
zone once over the time interval for which we wish to provide
differential privacy. Section II-B discussed how to relax this
requirement by splitting the input data into successive time
windows and creating additional input channels.

Suppose that we want to compute simultaneously and in
real-time the following three outputs from the 15 input signalsy1y2

y3

 =

 f1(z)11×5 01×10
01×4 f2(z)11×8 01×3

f3(z)

u, (17)

where

• y1 is the sum of the simple moving averages over the
past 60 min for zones 1 to 5, i.e., f1(z) = 1

20

∑19
k=0 z

−k,
• y2 is

∑12
i=5 f2ui, with f2 a low-pass filter with Gaussian

shaped finite impulse response of length 20, obtained
using Matlab’s function gaussdesign(0.5,2,10).

• y3 is the scalar output of a 1×15 MISO filter f3 designed
to forecast at each period t the average total number
of events per time-period that will occur in the whole
building during the window [t+60 min, t+90 min]. This
filter was constructed by identifying an ARMAX model
[39] between the 15 inputs (plus a scalar white noise)
and the desired output, with the calibration done using
one part of the dataset. The model chosen takes the form

y3,t =
4∑
i=1

aiy3,t−i + b0ut + b1ut−1 + et + c1et−1,

where a1, . . . , a4 and b0, b1 are scalar and row vectors
respectively forming the filter f3, c1 is a scalar and et is
a zero-mean standard white noise input postulated by the
ARMAX model for system identification purposes.
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Fig. 4. Sample paths over 72 hours (the sampling period is 3 min) for
the outputs 2 and 3 of our differentially private approximation of filter (17),
shown together with the desired outputs. The privacy-related parameters are
ε = ln 5, δ = 0.05, ki = 4 for 1 ≤ i ≤ 15. The average `2 norm per period
for the error signal corresponding to each figure is 9.3 and 14.5 respectively.

Fig. 4 shows sample paths over a 72h period of the 2nd
and 3rd outputs of the desired filter and of its (ln 5, 0.05)-
differentially private approximation obtained using the ZFE
MIMO mechanism with diagonal pre-filter. The 15 optimal
pre-filters were obtained approximately via least-squares fit
of
√
|Fi(ejω)|2 with negligible approximation error (using

Matlab’s function yulewalk implementing the Yule-Walker
method [40]), rather than true spectral factorization as men-
tioned in Theorem 7. One apparent feature of the privacy-
preserving outputs seen on Fig. 4 is that the noise level is
independent of the size of the desired output signal, hence
low signal values tend to be easily buried in the noise. This
is one drawback of mechanisms relying on global sensitivity
measures and additive noise. Another noticeable element is
the fact that the noise remaining on each output can have
quite different characteristics depending on the desired filter
F , with the post-filter FG−1 removing more high-frequency
components on the second output than on the third.

Referring to (14) for the performance achieved with diago-
nal pre-filters as here and the lower bound (16), we obtain for
the filter F designed in our example

1

2π

∫ π

−π

15∑
i=1

ki|Fi(ejω)|2 dω ≈ 2.2× 1

2π

∫ π

−π
‖F (ejω)K‖∗dω.

Hence, compared to the performance potentially achievable
with general pre-filters, using diagonal pre-filters degrades the
root-mean-square error (RMSE) by a multiplicative factor of at
most 2.2. Note also from (14), (16) that the dependency of the
ZFE mechanism performance with respect to the parameters
ε, δ is captured simply by the factor κδ,ε.

VI. EXPLOITING SECOND ORDER STATISTICS ON THE
INPUT SIGNALS

One issue with zero-forcing equalizers is the noise am-
plification at frequencies where |G(ejω)| is small, due to

the inversion in H = FG−1 [41]. This issue is not as
problematic for the optimal ZFE mechanism, since in this
case the amplification is compensated by the fact that |F (ejω)|
and |G(ejω)| given in Theorem 7 are both small at the same
frequencies. Nonetheless, in general one can improve on the
ZFE mechanism by using more advanced equalization schemes
in the design of the post-filter H of Fig. 1, and we discuss one
such scheme in this section. Note however that the mechanisms
presented below require that the input signals satisfy certain
properties, such as wide-sense stationarity, and that some
publicly available information on these signals be available,
e.g., their second order statistics. Hence, the ZFE mechanism
remains generally useful due to its broad applicability, even in
the absence of any model of the input signal dynamics.

A. LMMSE Mechanisms

One can improve on the ZFE mechanism if some infor-
mation on the statistics of the input signal u is publicly
available. In general, constructing the optimum maximum-
likelihood estimate of {(Fu)k}k≥0 from {vk}k≥0 on Fig. 1 is
computationally intensive and requires the knowledge of the
full joint probability distribution of {uk}k≥0 [41]. Hence, we
explore in this subsection a family of simpler schemes based
on Linear Minimum Mean Square Error (LMMSE) estimation,
which we call LMMSE mechanisms.

Assume that it is publicly known that u is wide-sense
stationary (WSS) with know mean vector µ and matrix-
valued autocorrelation sequence Ru[k] = E[utu

T
t−k] =

Ru[−k]T ,∀k. Without loss of generality, we can assume µ
to be zero, since the output y is also WSS with known
mean equal to F (1)µ. The z-spectrum matrix of u is de-
noted Pu(z) =

∑∞
k=−∞R[k]z−k. For simplicity of expo-

sition, Pu(z) is assumed to have rational entries and be
positive definite on the unit circle, i.e., Pu(ejω) � 0, for
all ω ∈ [−π, π). More generally, given two vector-valued
WSS signals u and v, we denote the cross-correlation matrix
Ruv[k] = E[utv

T
t−k], the cross power spectral density matrix

Puv(e
jω) =

∑∞
k=−∞Ruv[k]e−jωk and the z-cross-spectrum

Puv(z) =
∑∞
k=−∞Ruv[k]z−k. All z-spectra are assumed to

be rational and in particular, we do not discuss the case of
spectra with impulses [42].

Referring again to the architecture of Fig. 1, an LMMSE
mechanism is characterized by a choice of pre-filter G and
the use of a Wiener filter H to estimate y from v [34],
[43]. Recall that the Wiener filter produces an estimate ŷ
minimizing the MSE between y and ŷ over linear filters,
assuming that the signals y, v are WSS with known second-
order joint statistics. Here, these statistics can be expressed in
terms of those of u, w, and of the transfer function G. The
main contribution of this section is to derive a numerically
computable lower bound on the MSE achievable by LMMSE
mechanisms for which the pre-filter G is diagonal. The lower
bound provides an estimate of how far a specific choice of
such diagonal G is from the optimum choice. Our procedure
involves the following steps. For the derivation of the lower
bound, we assume for tractability reasons that H is an infinite
impulse response (IIR) Wiener smoother, i.e., not necessarily
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causal. The reason is that we can then express the estimation
performance analytically as a function of G. We then optimize
this performance measure over diagonal pre-filters G.

For specific implementations of causal LMMSE mecha-
nisms, two natural choices are discussed. First, we can take
the pre-filter G obtained from the computation of the lower
bound, and design for H a causal Wiener filter, or perhaps
a slightly non-causal filter if it can be implemented by intro-
ducing a delay that is tolerable for a specific application. This
mechanism will not attain the lower bound in general, since
the bound and corresponding G were obtained by removing
the causality constraint on H . Another possibility is to take
G as in the ZFE mechanism, and simply replace H = FG−1

by a Wiener filter. This choice has the advantage of always
improving on the ZFE mechanism, and tends to perform well
in practice.

1) Lower Bound on MSE: The (non-causal) Wiener
smoother H has the transfer function H(z) = Pyv(z)Pv(z)

−1

[34, Section 7.8]. According to Theorem 3, for G diagonal
we can take the privacy-preserving noise w to be white and
Gaussian with covariance σ2Im with σ2 = κ2δ,ε‖GK‖22. Since
u and w are uncorrelated, we have

Pyv(z) = F (z)Pu(z)G(z−1)T ,

Pv(z) = G(z)Pu(z)G(z−1)T + σ2Im.
(18)

Hence

H(z) =F (z)Pu(z)G(z−1)T

×
(
G(z)Pu(z)G(z−1)T + κ2δ,ε‖G‖22 Im

)−1
.

(19)

The MSE can then be expressed as eLMMSE
mse (G) =

1
2π

∫ π
−π Tr(Py(ejω)−Pŷ(ejω))dω [34, Chapter 7]. In our case,

Pŷ(ejω) = H(ejω)Pv(e
jω)H(ejω)∗

= Pyv(e
jω)Pv(e

jω)−1Pyv(e
jω)∗

Pŷ = FPuG
∗(σ2Im +GPuG

∗)−1GPuF
∗,

where on the last line and in the following we often omit the
argument ejω next to matrices, to simplify the notation. Let
us denote Pu(ejω) = ∆(ejω)∆(ejω), where ∆(ejω) � 0 is
the principal square root of Pu(ejω). We have then

Py − Pŷ = FPuF
∗ − Pŷ

= F∆(Im −∆G∗(σ2Im +G∆∆G∗)−1G∆)∆F ∗

= F∆

(
Im +

1

σ2
∆G∗G∆

)−1
∆F ∗,

where the last expression was obtained using the matrix in-
version lemma. Finally, defining G̃(ejω) := 1

‖GK‖2G(ejω)K,
we obtain the expression

eLMMSE
mse (G̃) =

1

2π

∫ π

−π
Tr
[
F∆Z−1∆F ∗

]
dω (20)

with Z =

(
Im +

1

κ2δ,ε
∆K−1G̃∗G̃K−1∆

)
,

where again the arguments ejω where omitted. The objective
(20) should be minimized over all transfer functions G̃ that

by definition must satisfy the constraint

‖G̃‖22 =
1

2π

∫ π

−π
Tr(G̃(ejω)∗G̃(ejω))dω = 1. (21)

Note that in (20) we can show that we recover the expression
(15) of the performance of the ZFE mechanism in the limit
Pu(ejω)→∞.

To obtain a lower bound on performance (for diagonal
pre-filters), we now minimize the performance measure (20)
over the choice of diagonal pre-filters G satisfying (21). First,
in the case where Pu(ejω) is positive definite and diagonal
for all ω, i.e., the different input signals are uncorrelated,
we have in fact an allocation problem whose solution is
of the “waterfilling type” [44]. Namely, denote Pu(ejω) =
diag(p1(ejω), . . . , pm(ejω)) and X(ejω) = G̃(ejω)∗G̃(ejω) =
diag(x1(ejω), . . . , xm(ejω)), with xi(e

jω) = |G̃ii(ejω)|2.
Omitting the expression ejω in the integrals for clarity, (20)
and (21) read

min
x(·)

1

2π

∫ π

−π

m∑
i=1

1
1
pi

+ xi
κ2
δ,εk

2
i

|Fi|22 dω

s.t.
1

2π

∫ π

−π

m∑
i=1

xi dω = 1, xi(e
jω) ≥ 0,∀ω, i,

and the solution to this convex problem is

xi(e
jω) = max

{
0,
κδ,εki|Fi(ejω)|2

λ
−

κ2δ,εk
2
i

pi(ejω)

}
, (22)

where λ > 0 is adjusted so that the solution satisfies the
equality constraint (21) (note that since (22) is not smooth
we would have to approximate this solution if we wanted
to implement the corresponding G with a finite-dimensional
filter). Problems of this type are discussed in the communica-
tion literature on joint transmitter-receiver optimization [27],
[28], which is not too surprising in view of our approximation
setup on Fig. 1. When Pu(ejω) is not diagonal, it is shown
in [28] that the problem can be reduced to the diagonal case
if G can be arbitrary, however the argument does not appear
to carry through under our constraint that G must also be
diagonal. Nonetheless, one can obtain a solution arbitrarily
close to the minimum one using semidefinite programming.
First, we discretize the optimization problem at the set of
frequencies ωq = qπ

N , q = 0, . . . , N . Note that all functions
are even functions of ω, hence we can restrict out attention
to the interval [0, π]. Then, we define the m(N + 1) variables
xiq = xi(e

jωq ), with xiq ≥ 0, and Xq = diag(x1q, . . . , xmq).
Using the trapezoidal rule to approximate the integrals, we
obtain the following optimization problem

min
{Xq,Mq}0≤q≤N

1

2N

N−1∑
q=0

Tr [Mq +Mq+1] (23)

s.t.
[
Mq Fq∆q

∆qF
∗
q Im + ∆̃qXq∆̃

∗
q

]
� 0, 0 ≤ q ≤ N, (24)

1

2N

N−1∑
q=0

Tr[Xq +Xq+1] = 1, and Xq � 0, 0 ≤ q ≤ N,
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where Fq := F (ejωq ), ∆q := ∆(ejωq ) and ∆̃q =
1
κδ,ε

∆qK
−1. Note that (24) is equivalent to Mq �

Fq∆q

(
Im + ∆̃qXq∆̃

∗
q

)−1
∆qF

∗
q by taking the Schur com-

plement. The optimization problem (23), (24) is a semidefinite
program (SDP), and can thus be solved efficiently even for a
relatively fine discretization of the interval [0, π]. Assuming
such a sufficiently fine discretization, the value obtained from
solving the SDP provides a lower bound on the performance
achievable by any LMMSE mechanism using a diagonal
pre-filter G and a deconvolution Wiener filter H (or even
smoother).

2) Pre- and Post-filter Design: We single out here two pre-
filters G of interest to construct practical LMMSE mecha-
nisms. The first is simply the square root pre-filter of Theorem
7. By using it we improve on the the ZFE mechanism,
assuming the statistical assumptions on u are satisfied. Another
possible pre-filter G is the one obtained from solving the
SDP above. The transfer functions G̃ii (and hence Gii) of the
filter G̃ can then be obtained by interpolation of their squared
magnitude xi(e

jω) from the variables xiq and m spectral
factorizations. Note that the resulting filter G would only be
optimal in the LMMSE family if we were using a Wiener
smoother H , i.e., if we relaxed the causality constraint on H .

Assuming that G(z) is chosen to be rational and with
our standing assumption that Pu is rational, then Pv is
rational as well, and note from (18) that Pv(e

jω) � 0
for all −π ≤ ω < π. Hence Pv(z) has the canonical
spectral factorization Pv(z) = L(z)PeL(z−1)T where Pe � 0
and L and L−1 are analytic in the region |z| ≥ 1 and
L(∞) = Im [34, Section 7.8]. Then, the causal Wiener
filter is H(z) = [Pyv(z)L(z−1)−T ]+ P

−1
e L(z)−1, where for

a linear filter M(z) with (matrix-valued) impulse reponse
{mt}−∞≤t≤∞, [M(z)]+ denotes the causal filter with impulse
response {mt1{t≥0}}t.

B. Example: Events Generated by Markovian Dynamics

We illustrate through a simple example that performance
improvement over the ZFE mechanism is possible when we
take into account additional public information about the input
signals, as described in the previous subsection. Consider a
server (shared computing ressource, clerk in an administrative
office, etc.) processing jobs submitted by customers, and which
can be either idle or busy. An event is recorded when
the server switches from one state to the other. One way of
representing this system is via the Markov chain model with
4 states shown on Fig. 5, with an event being generated when
the server enters the intermediary states s1 and s2, in which
it can only stay for one time period. The events recorded at
the transition times should be kept private. For example, in a
shared computing environment, processing times and patterns
could provide some information about the jobs submitted by
a user that he or she does not want to disclose [45]. On the
other hand, we assume that the parameters α, β governing
the transition probabilities and shown on Fig. 5 are public
information representing known aggregate statistics about the
server dynamics.

1:
idle

2:
s1

4:
s2

3:
busy

α 1

β1

1-α 1-β

Fig. 5. Transition probabilities for the Markov chain example. The numbering
of states 1 to 4 is the one used to express the z-spectrum (25). We assume
α, β /∈ {0, 1}, in which case the chain is ergodic. The stationary probabilities
are then p1 = β/q, p2 = p4 = αβ/q, p3 = α/q, with q = α+ β + 2αβ.

For a general time-homogeneous finite-state Markov chain
{xt}t with N states, we can assume without loss of gen-
erality that the state space is the set of N -dimensional ba-
sis vectors denoted {e1, . . . , eN}, with eij = δij . Denote
the N -by-N transition probability matrix Π, with elements
Πij = P(xt+1 = ei|xt = ej). Assume moreover that the
chain is ergodic (irreducible and aperiodic) and stationary,
and introduce the column vector p of stationary propabilities,
i.e., pi = P(xt = ei), so that Πp = p. Note that with this
encoding of the states we have E[xt] = p. For convenience
we also introduce the 0-mean sequence x̃t = xt − p, tak-
ing values in {ẽ1, . . . , ẽN} with ẽi = ei − p. Finally, let
D = diag(p1, . . . , pN ). Then one can show [46] that the z-
spectrum of the sequence x̃t is

Px̃(z) = (zI −H)−1(D −ΠDΠT )(z−1I −HT )−1, (25)

where H = Π − p1T . We use this formalism to represent
the server dynamics above via the Markov chain of Fig. 5,
assumed to be stationary. Hence N = 4, and the two stationary
signals generated by the server entering the intermediate states
s1 and s2 encoded here as e2 and e4 are u1,t = eT2 xt =

eT2 x̃t+p2, u2,t = eT4 xt = eT4 x̃t+p4. Denoting C =
[
e2 e4

]T
and ũ = Cx̃ the centered input signals, we have Pũ(z) =
CPx̃(z)CT .

Suppose now for example that we want to release a filtered
version of the two-dimensional input signal u, for the MISO
filter F (z) =

[
F1(z) F2(z)

]
, where F1 and F2 are low-pass

FIR filters with triangular impulse reponses of different lengths

Fi(z) =
2

Ni

(
Ni−1∑
k=0

(k + 1)z−k +

2Ni−1∑
k=Ni

(2Ni − k)z−k
)
,

(26)
with N1 = 50, N2 = 25. We can take k1 = k2 = 1 in
the adjacency relation since the signals ui,t switch between
values separated by 1. Fig. 6 shows an example of sample
paths obtained using the ZFE mechanism and the LMMSE
mechanism replacing the inverse post-filter of the ZFE mech-
anism by a Wiener filter. In this case choosing the pre-filter
obtained from solving the optimization problem (23) (optimal
for the Wiener smoother) gives a worse error. Then, for the
same two mechanisms providing (ε, δ)-differential privacy,
Fig. 7 shows the RMSE obtained for δ = 0.05 and different



0018-9286 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2713643, IEEE
Transactions on Automatic Control

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 12

Period Number
0 100 200 300 400 500 600 700 800 900 1000

O
u
tp

u
t

-50
-40
-30
-20
-10
0
10
20
30
40

Desired query
ZFE

Period Number
0 100 200 300 400 500 600 700 800 900 1000

O
u
tp

u
t

-50
-40
-30
-20
-10
0
10
20
30
40

Desired query
Square root+Wiener

Fig. 6. Sample paths obtained for the query (26) and two (ln(3), 0.05)-
differentially private approximations: the ZFE mechanism (top, empirical
RMSE = 7.1), and the same mechanism with the inverse post-filter replaced
by a (causal) Wiener filter (bottom, empirical RMSE = 4.5). The input signals
u1 and u2 are generated by the Markov chain of Fig. 5 as explained in the
text, with parameters α = 0.05, β = 0.15.

values of ε. We also plot the performance lower bounds for
ZFE mechanisms with general pre-filters (Theorem 8) and
for LMMSE mechanisms for any diagonal pre-filter (solution
of (23)). We can see that ZFE mechanisms become quickly
unusable as ε become small, i.e., when a significant amount
of privacy preserving noise is introduced, even if we could
optimize over general pre-filters rather than just diagonal ones.
Recall in particular from (16), (14) that the dependance on the
privacy parameters ε, δ of both the diagonal ZFE mechanism
performance and of the lower bound is captured completely
by the multiplicative factor κδ,ε. This is not the case for the
LMMSE mechanism however, since the Wiener filter takes
the privacy noise variance into account. Moreover, for the
LMMSE mechanism, we see that there is in this case little
performance to gain by further optimizing the diagonal pre-
filter, or even by replacing the post-filter by a non-causal
smoother.

VII. CONCLUSION

In this paper we have developed several approximations
of MIMO filters that enforce differential privacy guarantees,
while attempting to minimize the impact on performance
of this privacy specification. An optimal ZFE mechanism
extending the mechanism in [14], [15] was obtained for the
approximation of SIMO filters, and a suboptimal one consid-
ering only diagonal pre-filters was obtained for general MIMO
filters, together with a bound on the performance achievable
with non-diagonal pre-filters. We also illustrated the significant
performance gain that can be expected by leveraging a model
of the input signals, in this case on the second order statistics,
especially for high privacy levels (i.e., high noise levels, small
δ, ε).

The architecture of Fig. 1 considered here for the privacy
mechanisms appears to be in fact quite generic. It decomposes
the problem into a standard estimation problem, for which

0
0 0.5 1 1.5 2 2.5
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E
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30

ZFE
ZFE lower bound (general pre--lters)
LMMSE
LMMSE lower bound (diagonal pre--lters)

Fig. 7. Performance comparison (RMSE) for the (ε, 0.05)-differentially
private ZFE mechanism and LMMSE mechanism (using the same pre-filter
as ZFE but a causal Wiener post-filter), as a function of ε. We also show the
lower bounds on performance from Theorem 8 and from (23), which give an
indication of the maximum performance improvement that one could get by
further optimizing the mechanisms.

many alternative techniques could be used depending on the
scenario considered, and a first stage privacy-preserving filter
optimization problem. Natural extensions of this work include
considering higher performance equalizers such as decision-
feedback equalizers (see [1] for the SISO case) and designing
mechanisms that work more naturally with relaxations of the
adjacency relation allowing users to activate the same sensor
multiple times.
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