# Expertise sheet of Professor Frédéric Sirois Polytechnique Montréal, Montréal (QC), Canada E-mail: <u>f.sirois@polymtl.ca</u>

#### Training:

B.A.Sc. : Electrical engineering, specialization in analog electronics and radio frequencyM.A.Sc. : Electrical engineering, specialization in electrical networks and equipmentPh.D. : Applied physics, specialization in superconducting materials

#### Main professional experiences:

| 1998-2005 | : Researcher, Hydro-Québec Research Institute (IREQ), Varennes (QC), Canada         |
|-----------|-------------------------------------------------------------------------------------|
| 2005      | : Professor-Researcher, Polytechnique Montréal, Montreal (QC), Canada               |
| 1999      | : Visiting researcher in several major institutions/organizations (EPFL, KIT, CNRS, |
|           | University of Cambridge, Lawrence Berkeley National Laboratory, CERN,)              |

#### **Expertise:**

Electrical circuits – Electromagnetism – Applied superconductivity – Cryogenics and thermal problems – Characterization of material properties – Superconducting, metallic, magnetic and composite materials – Conductive coatings – Contact resistances – Mathematical modeling – Numerical analyses: finite elements and integral methods – Device design electromagnetics – Electrical apparatus – Electrical networks – Conversion and distribution of energy – Experimental methods and instrumentation – Design of electronic circuits

#### **Application areas:**

Energy – Transport – Biomedical – Industrial processes – Non-destructive testing – Design software – Laboratory tools – Advancement of knowledge

#### Structure of the research program:

3 research axes + 1 transversal support axis



### Axis 1: Characterization of materials

|                 | Superconductors | Conductors            | Magnetic materials   | Resistive materials   | Insulating materials  |
|-----------------|-----------------|-----------------------|----------------------|-----------------------|-----------------------|
|                 | (S)             | (C)                   | (M)                  | (R)                   | (I)                   |
| Films           | -REBCO films on | -Metallic conductive  |                      | -Resistive barriers   | -Insulating barriers  |
| (tick and thin) | substrate       | coatings (Cu, Ag, Zn, |                      | (oxides in thin films | (oxides in thin films |
| (F)             | (coated         | Ni, Cd, etc.)         |                      | <100 nm)              | >100 nm)              |
|                 | conductors)     |                       |                      |                       |                       |
| Laminated       |                 | -Hastelloy laminates  | -Silicon steel       | -Carbon fiber         |                       |
| materials       |                 | (substrates for       | laminations (for     | composites            |                       |
| (L)             |                 | superconducting       | transformers and     |                       |                       |
|                 |                 | wires)                | electric machines)   |                       |                       |
| Bulk materials  | -REBCO bulks    | -Conventional metals  | -Magnetic steels and | -Power semi-          | -Fiber glass          |
| (B)             | -REBCO tubes    | and alloys (Cu, Al,   | superalloys          | conductors            | composites            |
|                 |                 | etc.)                 | -Permanent magnets   |                       |                       |
|                 |                 |                       | (all types)          |                       |                       |

Table I – Families of materials covered by Prof. Sirois' research

## -Experimental characterization of material properties

-Electrical properties (V-I measurements based on different equipment)

- -V-I curves, critical current measurement (I<sub>c</sub>): 2, 4, and multi-probe measurements
- -Resistivity/Electrical Resistance: 2, 4, and multi-probe measurements
- -Contact resistance: different methods depending on the material considered
- -Current transfer length, surface potential: electrode matrices, multi-probe measurements

-Magnetic properties (specialty: large bulk samples)

-B-H curves: home-made hysteresis meter (20-900 °C), VSM (small samples only)

-Iron losses: custom setups

-Magnetization of permanent magnets: custom giant magnetometer

## -Mechanical and structural properties

-<u>Thickness of thin layers, surface roughness</u>: profilometer (resolution: nanometers) -<u>Structure of matter</u>: wide variety of microscopes (collab. with CM2 and GCM) -<u>Hardness</u>: Vickers hardness test, other tests as needed (collab. with LAPOM) -<u>Thermal contraction</u>: custom setups

## - Concentration of gas diffused in the solid state

-Oxygen/hydrogen concentration: TDS or differential pressure measurement

## -Range of experimental parameters\*

| - <u>Temperature:</u> | 10 to 300 K (in vacuum), 64 to 90 K (in liquid nitrogen)       |  |  |  |
|-----------------------|----------------------------------------------------------------|--|--|--|
|                       | 300 to 900 K (in a low pressure Argon atmosphere)              |  |  |  |
| -Magnetic field:      | 0 tp 5 T (in vacuum or in cryogenic liquid)                    |  |  |  |
| - <u>Current:</u>     | DC: 0-500 A – Pulsed: 0-1800 A (<10 ms) or 0-1600 A (5-500 μs) |  |  |  |
| -Measurable voltage:  | 100 nV to 250 V, up to 80 simultaneous readings                |  |  |  |

<sup>\*</sup>Depending on the type of sample and its size, the experimental conditions may be restricted.

#### **Axis 2: Physical modeling**

#### -Modeling of the electromagnetic and thermal behavior of various devices

-Short-circuit current limiters / Hot-spot propagation phenomena

-Magnetic levitation systems

-Power transmission cables

-Motors/Generators, etc.

#### -Algorithms for numerical simulation of electromagnetic and thermal problems

-Finite element method: home-made and commercial codes

-Integral methods: home-made and commercial codes

#### -Materials modeling

-Mathematical models of materials from measurements

-Superconducting materials

-Magnetic materials (including hysteresis) and permanent magnets

-Thin films and resistive barriers

-Integration of material models in numerical simulation software programs

-<u>Algorithms to improve the convergence of nonlinear materials</u> in numerical simulation software programs

#### **Axis 3: Design of devices**

#### -Design assisted by numerical simulation (see axis 2)

-Proof of concept by computer

-Parameterization and automation of numerical simulations

-Optimization of dimensions

-Performance prediction

#### - Manufacturing techniques

-Surface plating: electroplating, sputtering, chemical methods (electroless)

-Etching of surfaces: electro-polishing, masking + chemical attack

-Oxidation of surfaces: chemical attack + anodization

-Oxygenation of superconductors: oven with gas flow or pressure (up to 700 °C)

-Soldering: regular, with special alloys, of Litz wires, at low temperature

-Low temperature materials: cryostats, custom fixtures and sample holders, etc.

#### -Quality and performance

-Solder quality: measurement of contact resistance, porosities, etc.

-Thermal cycles and aging: evolution of material properties

-Performance Metrics: see axis 4

#### Axis 4: Testing and instrumentation (in support of axes 1, 2 and 3)

#### -Data acquisition equipment

<u>-Acquisition cards</u>: many types, from very slow to very fast (up to 500 MS/s) <u>-Oscilloscopes and other conventional measuring instruments</u>

#### -Custom electronic circuit design

<u>-Pulsed current sources</u>: several types (5-1000 μs, 1-100 ms, DC)
<u>-Voltage measurement systems</u>: 16/40/80 differential inputs (1 mV to 250 V)
<u>-Automated signal multiplexers</u>: synchronized scanning of input signals
<u>-Interconnection and signal conditioning boxes</u>: custom designs

#### -Specialized measurement test benches

-Zone normal propagation velocity (NZPV) in superconducting tapes
-Critical temperature of superconductors
-3-D mapping of magnetic field around magnetized bodies (such as permanent magnets)

-Oxygen/hydrogen desorption measurements by differential pressure

#### -Specialized instrumentation for power tests

<u>-2 test areas: three-phase AC</u>: 600 V/400 A/400 kVA, DC: 500 V/200 A/50 kW <u>-Power amplifiers:</u> 2 x 5 kW/50 A/100V/50 kHz, 6 x 50 kW/200 A/250V/1 KHz <u>-Lightning current generator:</u> 10-50 kA, 5 μs of rise time <u>-Real-time simulators:</u> OPAL-RT, Hypersim (for prototyping of controllers) <u>-Conventional measuring equipment:</u> power analyzers, current transformers, etc.

#### -Other specialized infrastructure

<u>-Electromagnets (up to 7 T, several models)</u>
<u>-Cryostats for low temperature tests (10 to 300 K, several types)</u>
<u>-Ovens for heat treatments or aging tests (up to 900 °C)</u>
<u>-Custom fixtures and sample holders (for operation between 10 and 1000 K)</u>

#### -Specialized personnel for the operation of equipment and the performance of tests